This commit is contained in:
infiniteCable2
2025-12-13 12:13:49 +01:00
27 changed files with 1084 additions and 166 deletions

View File

@@ -161,6 +161,9 @@ if os.getenv("FINAL_PROVISIONING"):
flags += ["-DFINAL_PROVISIONING"]
build_project("panda_jungle_h7", base_project_h7, "./board/jungle/main.c", flags)
# body fw
build_project("body_h7", base_project_h7, "./board/body/main.c", ["-DPANDA_BODY"])
# test files
if GetOption('extras'):
SConscript('tests/libpanda/SConscript')

View File

@@ -8,3 +8,6 @@ from .python import (Panda, PandaDFU, # noqa: F401
# panda jungle
from .board.jungle import PandaJungle, PandaJungleDFU # noqa: F401
# panda body
from .board.body import PandaBody # noqa: F401

View File

@@ -128,7 +128,7 @@ board board_cuatro = {
.read_current_mA = cuatro_read_current_mA,
.set_fan_enabled = cuatro_set_fan_enabled,
.set_ir_power = unused_set_ir_power,
.set_siren = unused_set_siren,
.set_siren = fake_siren_set,
.set_bootkick = cuatro_set_bootkick,
.read_som_gpio = tres_read_som_gpio,
.set_amp_enabled = cuatro_set_amp_enabled

View File

@@ -168,7 +168,7 @@ board board_tres = {
.read_current_mA = unused_read_current,
.set_fan_enabled = tres_set_fan_enabled,
.set_ir_power = tres_set_ir_power,
.set_siren = fake_siren_set,
.set_siren = fake_i2c_siren_set,
.set_bootkick = tres_set_bootkick,
.read_som_gpio = tres_read_som_gpio,
.set_amp_enabled = unused_set_amp_enabled

42
board/body/__init__.py Normal file
View File

@@ -0,0 +1,42 @@
# python helpers for the body panda
import struct
from panda import Panda
class PandaBody(Panda):
MOTOR_LEFT: int = 1
MOTOR_RIGHT: int = 2
# ****************** Motor Control *****************
@staticmethod
def _ensure_valid_motor(motor: int) -> None:
if motor not in (PandaBody.MOTOR_LEFT, PandaBody.MOTOR_RIGHT):
raise ValueError("motor must be MOTOR_LEFT or MOTOR_RIGHT")
def motor_set_speed(self, motor: int, speed: int) -> None:
self._ensure_valid_motor(motor)
assert -100 <= speed <= 100, "speed must be between -100 and 100"
speed_param = speed if speed >= 0 else (256 + speed)
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe0, motor, speed_param, b'')
def motor_set_target_rpm(self, motor: int, rpm: float) -> None:
self._ensure_valid_motor(motor)
target_deci_rpm = int(round(rpm * 10.0))
assert -32768 <= target_deci_rpm <= 32767, "target rpm out of range (-3276.8 to 3276.7)"
target_param = target_deci_rpm if target_deci_rpm >= 0 else (target_deci_rpm + (1 << 16))
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe4, motor, target_param, b'')
def motor_stop(self, motor: int) -> None:
self._ensure_valid_motor(motor)
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe1, motor, 0, b'')
def motor_get_encoder_state(self, motor: int) -> tuple[int, float]:
self._ensure_valid_motor(motor)
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xe2, motor, 0, 8)
position, rpm_milli = struct.unpack("<ii", dat)
return position, rpm_milli / 1000.0
def motor_reset_encoder(self, motor: int) -> None:
self._ensure_valid_motor(motor)
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe3, motor, 0, b'')

View File

@@ -0,0 +1,21 @@
#include "board/body/motor_control.h"
void board_body_init(void) {
motor_init();
motor_encoder_init();
motor_speed_controller_init();
motor_encoder_reset(1);
motor_encoder_reset(2);
// Initialize CAN pins
set_gpio_pullup(GPIOD, 0, PULL_NONE);
set_gpio_alternate(GPIOD, 0, GPIO_AF9_FDCAN1);
set_gpio_pullup(GPIOD, 1, PULL_NONE);
set_gpio_alternate(GPIOD, 1, GPIO_AF9_FDCAN1);
}
board board_body = {
.led_GPIO = {GPIOC, GPIOC, GPIOC},
.led_pin = {7, 7, 7},
.init = board_body_init,
};

View File

@@ -0,0 +1,21 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
// ******************** Prototypes ********************
typedef void (*board_init)(void);
typedef void (*board_init_bootloader)(void);
typedef void (*board_enable_can_transceiver)(uint8_t transceiver, bool enabled);
struct board {
GPIO_TypeDef * const led_GPIO[3];
const uint8_t led_pin[3];
const uint8_t led_pwm_channels[3]; // leave at 0 to disable PWM
board_init init;
board_init_bootloader init_bootloader;
const bool has_spi;
};
// ******************* Definitions ********************
#define HW_TYPE_BODY 0xB1U

76
board/body/can.h Normal file
View File

@@ -0,0 +1,76 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include "board/can.h"
#include "board/health.h"
#include "board/body/motor_control.h"
#include "board/drivers/can_common_declarations.h"
#include "opendbc/safety/declarations.h"
#define BODY_CAN_ADDR_MOTOR_SPEED 0x201U
#define BODY_CAN_MOTOR_SPEED_PERIOD_US 10000U
#define BODY_BUS_NUMBER 0U
static struct {
bool pending;
int32_t left_target_deci_rpm;
int32_t right_target_deci_rpm;
} body_can_command;
void body_can_send_motor_speeds(uint8_t bus, float left_speed_rpm, float right_speed_rpm) {
CANPacket_t pkt;
pkt.bus = bus;
pkt.addr = BODY_CAN_ADDR_MOTOR_SPEED;
pkt.returned = 0;
pkt.rejected = 0;
pkt.extended = 0;
pkt.fd = 0;
pkt.data_len_code = 8;
int16_t left_speed_deci = left_speed_rpm * 10;
int16_t right_speed_deci = right_speed_rpm * 10;
pkt.data[0] = (uint8_t)((left_speed_deci >> 8) & 0xFFU);
pkt.data[1] = (uint8_t)(left_speed_deci & 0xFFU);
pkt.data[2] = (uint8_t)((right_speed_deci >> 8) & 0xFFU);
pkt.data[3] = (uint8_t)(right_speed_deci & 0xFFU);
pkt.data[4] = 0U;
pkt.data[5] = 0U;
pkt.data[6] = 0U;
pkt.data[7] = 0U;
can_set_checksum(&pkt);
can_send(&pkt, bus, true);
}
void body_can_process_target(int16_t left_target_deci_rpm, int16_t right_target_deci_rpm) {
body_can_command.left_target_deci_rpm = (int32_t)left_target_deci_rpm;
body_can_command.right_target_deci_rpm = (int32_t)right_target_deci_rpm;
body_can_command.pending = true;
}
void body_can_init(void) {
body_can_command.pending = false;
can_silent = false;
can_loopback = false;
(void)set_safety_hooks(SAFETY_BODY, 0U);
set_gpio_output(GPIOD, 2U, 0); // Enable CAN transceiver
can_init_all();
}
void body_can_periodic(uint32_t now) {
if (body_can_command.pending) {
body_can_command.pending = false;
float left_target_rpm = ((float)body_can_command.left_target_deci_rpm) * 0.1f;
float right_target_rpm = ((float)body_can_command.right_target_deci_rpm) * 0.1f;
motor_speed_controller_set_target_rpm(BODY_MOTOR_LEFT, left_target_rpm);
motor_speed_controller_set_target_rpm(BODY_MOTOR_RIGHT, right_target_rpm);
}
static uint32_t last_motor_speed_tx_us = 0;
if ((now - last_motor_speed_tx_us) >= BODY_CAN_MOTOR_SPEED_PERIOD_US) {
float left_speed_rpm = motor_encoder_get_speed_rpm(BODY_MOTOR_LEFT);
float right_speed_rpm = motor_encoder_get_speed_rpm(BODY_MOTOR_RIGHT);
body_can_send_motor_speeds(BODY_BUS_NUMBER, left_speed_rpm, right_speed_rpm);
last_motor_speed_tx_us = now;
}
}

49
board/body/flash.py Normal file
View File

@@ -0,0 +1,49 @@
#!/usr/bin/env python3
import argparse
import os
import subprocess
from panda import Panda
BODY_DIR = os.path.dirname(os.path.realpath(__file__))
BOARD_DIR = os.path.abspath(os.path.join(BODY_DIR, ".."))
REPO_ROOT = os.path.abspath(os.path.join(BOARD_DIR, ".."))
DEFAULT_FIRMWARE = os.path.join(BOARD_DIR, "obj", "body_h7.bin.signed")
def build_body() -> None:
subprocess.check_call(
f"scons -C {REPO_ROOT} -j$(nproc) board/obj/body_h7.bin.signed",
shell=True,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("firmware", nargs="?", help="Optional path to firmware binary to flash")
parser.add_argument("--all", action="store_true", help="Flash all Panda devices")
parser.add_argument(
"--wait-usb",
action="store_true",
help="Wait for the panda to reconnect over USB after flashing (defaults to skipping reconnect).",
)
args = parser.parse_args()
firmware_path = os.path.abspath(args.firmware) if args.firmware is not None else DEFAULT_FIRMWARE
build_body()
if not os.path.isfile(firmware_path):
parser.error(f"firmware file not found: {firmware_path}")
if args.all:
serials = Panda.list()
print(f"found {len(serials)} panda(s) - {serials}")
else:
serials = [None]
for s in serials:
with Panda(serial=s) as p:
print("flashing", p.get_usb_serial())
p.flash(firmware_path, reconnect=args.wait_usb)
exit(1 if len(serials) == 0 else 0)

81
board/body/main.c Normal file
View File

@@ -0,0 +1,81 @@
#include <stdint.h>
#include <stdbool.h>
#include "board/config.h"
#include "board/drivers/led.h"
#include "board/drivers/pwm.h"
#include "board/drivers/usb.h"
#include "board/early_init.h"
#include "board/obj/gitversion.h"
#include "board/body/motor_control.h"
#include "board/body/can.h"
#include "opendbc/safety/safety.h"
#include "board/drivers/can_common.h"
#include "board/drivers/fdcan.h"
#include "board/can_comms.h"
extern int _app_start[0xc000];
#include "board/body/main_comms.h"
void debug_ring_callback(uart_ring *ring) {
char rcv;
while (get_char(ring, &rcv)) {
(void)injectc(ring, rcv);
}
}
void __attribute__ ((noinline)) enable_fpu(void) {
SCB->CPACR |= ((3UL << (10U * 2U)) | (3UL << (11U * 2U)));
}
void __initialize_hardware_early(void) {
enable_fpu();
early_initialization();
}
volatile uint32_t tick_count = 0;
void tick_handler(void) {
if (TICK_TIMER->SR != 0) {
if (can_health[0].transmit_error_cnt >= 128) {
(void)llcan_init(CANIF_FROM_CAN_NUM(0));
}
static bool led_on = false;
led_set(LED_RED, led_on);
led_on = !led_on;
tick_count++;
}
TICK_TIMER->SR = 0;
}
int main(void) {
disable_interrupts();
init_interrupts(true);
clock_init();
peripherals_init();
current_board = &board_body;
hw_type = HW_TYPE_BODY;
current_board->init();
REGISTER_INTERRUPT(TICK_TIMER_IRQ, tick_handler, 10U, FAULT_INTERRUPT_RATE_TICK);
led_init();
microsecond_timer_init();
tick_timer_init();
usb_init();
body_can_init();
enable_interrupts();
while (true) {
uint32_t now = microsecond_timer_get();
motor_speed_controller_update(now);
body_can_periodic(now);
}
return 0;
}

105
board/body/main_comms.h Normal file
View File

@@ -0,0 +1,105 @@
void comms_endpoint2_write(const uint8_t *data, uint32_t len) {
UNUSED(data);
UNUSED(len);
}
int comms_control_handler(ControlPacket_t *req, uint8_t *resp) {
unsigned int resp_len = 0;
switch (req->request) {
// **** 0xc1: get hardware type
case 0xc1:
resp[0] = hw_type;
resp_len = 1;
break;
// **** 0xd1: enter bootloader mode
case 0xd1:
switch (req->param1) {
case 0:
print("-> entering bootloader\n");
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
break;
case 1:
print("-> entering softloader\n");
enter_bootloader_mode = ENTER_SOFTLOADER_MAGIC;
NVIC_SystemReset();
break;
default:
print("Bootloader mode invalid\n");
break;
}
break;
// **** 0xd3/0xd4: signature bytes
case 0xd3:
case 0xd4: {
uint8_t offset = (req->request == 0xd3) ? 0U : 64U;
resp_len = 64U;
char *code = (char *)_app_start;
int code_len = _app_start[0];
(void)memcpy(resp, &code[code_len + offset], resp_len);
break;
}
// **** 0xd6: get version
case 0xd6:
(void)memcpy(resp, gitversion, sizeof(gitversion));
resp_len = sizeof(gitversion) - 1U;
break;
// **** 0xd8: reset ST
case 0xd8:
NVIC_SystemReset();
break;
// **** 0xe0: set motor speed
case 0xe0:
motor_set_speed((uint8_t)req->param1, (int8_t)req->param2);
break;
// **** 0xe1: stop motor
case 0xe1:
motor_set_speed((uint8_t)req->param1, 0);
break;
// **** 0xe2: get motor encoder state
case 0xe2: {
uint8_t motor = (uint8_t)req->param1;
int32_t position = motor_encoder_get_position(motor);
float rpm = motor_encoder_get_speed_rpm(motor);
int32_t rpm_milli = (int32_t)(rpm * 1000.0f);
(void)memcpy(resp, &position, sizeof(position));
(void)memcpy(resp + sizeof(position), &rpm_milli, sizeof(rpm_milli));
resp_len = (uint8_t)(sizeof(position) + sizeof(rpm_milli));
break;
}
// **** 0xe3: reset encoder position
case 0xe3:
motor_encoder_reset((uint8_t)req->param1);
break;
// **** 0xe4: set motor target speed (rpm * 0.1)
case 0xe4: {
uint8_t motor = (uint8_t)req->param1;
float target_rpm = ((int16_t)req->param2) * 0.1f;
motor_speed_controller_set_target_rpm(motor, target_rpm);
break;
}
// **** 0xdd: get healthpacket and CANPacket versions
case 0xdd:
resp[0] = HEALTH_PACKET_VERSION;
resp[1] = CAN_PACKET_VERSION;
resp[2] = CAN_HEALTH_PACKET_VERSION;
resp_len = 3U;
break;
default:
// Ignore unhandled requests
break;
}
return resp_len;
}

15
board/body/motor_common.h Normal file
View File

@@ -0,0 +1,15 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
#define BODY_MOTOR_COUNT 2U
typedef enum {
BODY_MOTOR_LEFT = 1U,
BODY_MOTOR_RIGHT = 2U,
} body_motor_id_e;
static inline bool body_motor_is_valid(uint8_t motor) {
return (motor > 0U) && (motor <= BODY_MOTOR_COUNT);
}

251
board/body/motor_control.h Normal file
View File

@@ -0,0 +1,251 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include "board/body/motor_common.h"
#include "board/body/motor_encoder.h"
// Motor pin map:
// M1 drive: PB8 -> TIM16_CH1, PB9 -> TIM17_CH1, PE2/PE3 enables
// M2 drive: PA2 -> TIM15_CH1, PA3 -> TIM15_CH2, PE8/PE9 enables
#define PWM_TIMER_CLOCK_HZ 120000000U
#define PWM_FREQUENCY_HZ 5000U
#define PWM_PERCENT_MAX 100
#define PWM_RELOAD_TICKS ((PWM_TIMER_CLOCK_HZ + (PWM_FREQUENCY_HZ / 2U)) / PWM_FREQUENCY_HZ)
#define KP 0.25f
#define KI 0.5f
#define KD 0.008f
#define KFF 0.9f
#define MAX_RPM 100.0f
#define OUTPUT_MAX 100.0f
#define DEADBAND_RPM 1.0f
#define UPDATE_PERIOD_US 1000U
typedef struct {
TIM_TypeDef *forward_timer;
uint8_t forward_channel;
TIM_TypeDef *reverse_timer;
uint8_t reverse_channel;
GPIO_TypeDef *pwm_port[2];
uint8_t pwm_pin[2];
uint8_t pwm_af[2];
GPIO_TypeDef *enable_port[2];
uint8_t enable_pin[2];
} motor_pwm_config_t;
static const motor_pwm_config_t motor_pwm_config[BODY_MOTOR_COUNT] = {
[BODY_MOTOR_LEFT - 1U] = {
TIM16, 1U, TIM17, 1U,
{GPIOB, GPIOB}, {8U, 9U}, {GPIO_AF1_TIM16, GPIO_AF1_TIM17},
{GPIOE, GPIOE}, {2U, 3U},
},
[BODY_MOTOR_RIGHT - 1U] = {
TIM15, 2U, TIM15, 1U,
{GPIOA, GPIOA}, {2U, 3U}, {GPIO_AF4_TIM15, GPIO_AF4_TIM15},
{GPIOE, GPIOE}, {8U, 9U},
},
};
typedef struct {
bool active;
float target_rpm;
float integral;
float previous_error;
float last_output;
uint32_t last_update_us;
} motor_speed_state_t;
static inline float motor_absf(float value) {
return (value < 0.0f) ? -value : value;
}
static inline float motor_clampf(float value, float min_value, float max_value) {
if (value < min_value) {
return min_value;
}
if (value > max_value) {
return max_value;
}
return value;
}
static motor_speed_state_t motor_speed_states[BODY_MOTOR_COUNT];
static inline void motor_pwm_write(TIM_TypeDef *timer, uint8_t channel, uint8_t percentage) {
uint32_t period = (timer->ARR != 0U) ? timer->ARR : PWM_RELOAD_TICKS;
uint16_t comp = (uint16_t)((period * (uint32_t)percentage) / 100U);
if (channel == 1U) {
register_set(&(timer->CCR1), comp, 0xFFFFU);
} else if (channel == 2U) {
register_set(&(timer->CCR2), comp, 0xFFFFU);
}
}
static inline motor_speed_state_t *motor_speed_state_get(uint8_t motor) {
return body_motor_is_valid(motor) ? &motor_speed_states[motor - 1U] : NULL;
}
static inline void motor_speed_state_reset(motor_speed_state_t *state) {
state->active = false;
state->target_rpm = 0.0f;
state->integral = 0.0f;
state->previous_error = 0.0f;
state->last_output = 0.0f;
state->last_update_us = 0U;
}
static void motor_speed_controller_init(void) {
for (uint8_t i = 0U; i < BODY_MOTOR_COUNT; i++) {
motor_speed_state_reset(&motor_speed_states[i]);
}
}
static void motor_speed_controller_disable(uint8_t motor) {
motor_speed_state_t *state = motor_speed_state_get(motor);
if (state == NULL) {
return;
}
motor_speed_state_reset(state);
}
static inline void motor_write_enable(uint8_t motor_index, bool enable) {
const motor_pwm_config_t *cfg = &motor_pwm_config[motor_index];
uint8_t level = enable ? 1U : 0U;
set_gpio_output(cfg->enable_port[0], cfg->enable_pin[0], level);
set_gpio_output(cfg->enable_port[1], cfg->enable_pin[1], level);
}
static void motor_init(void) {
register_set_bits(&(RCC->AHB4ENR), RCC_AHB4ENR_GPIOAEN | RCC_AHB4ENR_GPIOBEN | RCC_AHB4ENR_GPIOEEN);
register_set_bits(&(RCC->APB2ENR), RCC_APB2ENR_TIM16EN | RCC_APB2ENR_TIM17EN | RCC_APB2ENR_TIM15EN);
for (uint8_t i = 0U; i < BODY_MOTOR_COUNT; i++) {
const motor_pwm_config_t *cfg = &motor_pwm_config[i];
motor_write_enable(i, false);
set_gpio_alternate(cfg->pwm_port[0], cfg->pwm_pin[0], cfg->pwm_af[0]);
set_gpio_alternate(cfg->pwm_port[1], cfg->pwm_pin[1], cfg->pwm_af[1]);
pwm_init(cfg->forward_timer, cfg->forward_channel);
pwm_init(cfg->reverse_timer, cfg->reverse_channel);
TIM_TypeDef *forward_timer = cfg->forward_timer;
register_set(&(forward_timer->PSC), 0U, 0xFFFFU);
register_set(&(forward_timer->ARR), PWM_RELOAD_TICKS, 0xFFFFU);
forward_timer->EGR |= TIM_EGR_UG;
register_set(&(forward_timer->BDTR), TIM_BDTR_MOE, 0xFFFFU);
if (cfg->reverse_timer != cfg->forward_timer) {
TIM_TypeDef *reverse_timer = cfg->reverse_timer;
register_set(&(reverse_timer->PSC), 0U, 0xFFFFU);
register_set(&(reverse_timer->ARR), PWM_RELOAD_TICKS, 0xFFFFU);
reverse_timer->EGR |= TIM_EGR_UG;
register_set(&(reverse_timer->BDTR), TIM_BDTR_MOE, 0xFFFFU);
}
}
}
static void motor_apply_pwm(uint8_t motor, int32_t speed_command) {
if (!body_motor_is_valid(motor)) {
return;
}
int8_t speed = (int8_t)motor_clampf((float)speed_command, -(float)PWM_PERCENT_MAX, (float)PWM_PERCENT_MAX);
uint8_t pwm_value = (uint8_t)((speed < 0) ? -speed : speed);
uint8_t motor_index = motor - 1U;
motor_write_enable(motor_index, speed != 0);
const motor_pwm_config_t *cfg = &motor_pwm_config[motor_index];
if (speed > 0) {
motor_pwm_write(cfg->forward_timer, cfg->forward_channel, pwm_value);
motor_pwm_write(cfg->reverse_timer, cfg->reverse_channel, 0U);
} else if (speed < 0) {
motor_pwm_write(cfg->forward_timer, cfg->forward_channel, 0U);
motor_pwm_write(cfg->reverse_timer, cfg->reverse_channel, pwm_value);
} else {
motor_pwm_write(cfg->forward_timer, cfg->forward_channel, 0U);
motor_pwm_write(cfg->reverse_timer, cfg->reverse_channel, 0U);
}
}
static inline void motor_set_speed(uint8_t motor, int8_t speed) {
motor_speed_controller_disable(motor);
motor_apply_pwm(motor, (int32_t)speed);
}
static inline void motor_speed_controller_set_target_rpm(uint8_t motor, float target_rpm) {
motor_speed_state_t *state = motor_speed_state_get(motor);
if (state == NULL) {
return;
}
target_rpm = motor_clampf(target_rpm, -MAX_RPM, MAX_RPM);
if (motor_absf(target_rpm) <= DEADBAND_RPM) {
motor_speed_controller_disable(motor);
motor_apply_pwm(motor, 0);
return;
}
state->active = true;
state->target_rpm = target_rpm;
state->integral = 0.0f;
state->previous_error = target_rpm - motor_encoder_get_speed_rpm(motor);
state->last_output = 0.0f;
state->last_update_us = 0U;
}
static inline void motor_speed_controller_update(uint32_t now_us) {
for (uint8_t motor = BODY_MOTOR_LEFT; motor <= BODY_MOTOR_RIGHT; motor++) {
motor_speed_state_t *state = motor_speed_state_get(motor);
if (!state->active) {
continue;
}
bool first_update = (state->last_update_us == 0U);
uint32_t dt_us = first_update ? UPDATE_PERIOD_US : (now_us - state->last_update_us);
if (!first_update && (dt_us < UPDATE_PERIOD_US)) {
continue;
}
float measured_rpm = motor_encoder_get_speed_rpm(motor);
float error = state->target_rpm - measured_rpm;
if ((motor_absf(state->target_rpm) <= DEADBAND_RPM) && (motor_absf(error) <= DEADBAND_RPM) && (motor_absf(measured_rpm) <= DEADBAND_RPM)) {
motor_speed_controller_disable(motor);
motor_apply_pwm(motor, 0);
continue;
}
float dt_s = (float)dt_us * 1.0e-6f;
float control = KFF * state->target_rpm;
if (dt_s > 0.0f) {
state->integral += error * dt_s;
float derivative = first_update ? 0.0f : (error - state->previous_error) / dt_s;
control += (KP * error) + (KI * state->integral) + (KD * derivative);
} else {
state->integral = 0.0f;
control += KP * error;
}
if ((state->target_rpm > 0.0f) && (control < 0.0f)) {
control = 0.0f;
state->integral = 0.0f;
} else if ((state->target_rpm < 0.0f) && (control > 0.0f)) {
control = 0.0f;
state->integral = 0.0f;
}
control = motor_clampf(control, -OUTPUT_MAX, OUTPUT_MAX);
int32_t command = (control >= 0.0f) ? (int32_t)(control + 0.5f) : (int32_t)(control - 0.5f);
motor_apply_pwm(motor, command);
state->previous_error = error;
state->last_output = control;
state->last_update_us = now_us;
}
}

170
board/body/motor_encoder.h Normal file
View File

@@ -0,0 +1,170 @@
#pragma once
#include <stdint.h>
#include "board/body/motor_common.h"
// Encoder pin map:
// Left motor: PB6 -> TIM4_CH1, PB7 -> TIM4_CH2
// Right motor: PA6 -> TIM3_CH1, PA7 -> TIM3_CH2
typedef struct {
TIM_TypeDef *timer;
GPIO_TypeDef *pin_a_port;
uint8_t pin_a;
uint8_t pin_a_af;
GPIO_TypeDef *pin_b_port;
uint8_t pin_b;
uint8_t pin_b_af;
int8_t direction;
uint32_t counts_per_output_rev;
uint32_t min_dt_us;
float speed_alpha;
uint32_t filter;
} motor_encoder_config_t;
typedef struct {
const motor_encoder_config_t *config;
uint16_t last_timer_count;
int32_t accumulated_count;
int32_t last_speed_count;
uint32_t last_speed_timestamp_us;
float cached_speed_rps;
} motor_encoder_state_t;
static const motor_encoder_config_t motor_encoder_config[BODY_MOTOR_COUNT] = {
[BODY_MOTOR_LEFT - 1U] = {
.timer = TIM4,
.pin_a_port = GPIOB, .pin_a = 6U, .pin_a_af = GPIO_AF2_TIM4,
.pin_b_port = GPIOB, .pin_b = 7U, .pin_b_af = GPIO_AF2_TIM4,
.direction = -1,
.counts_per_output_rev = 44U * 90U,
.min_dt_us = 250U,
.speed_alpha = 0.2f,
.filter = 3U,
},
[BODY_MOTOR_RIGHT - 1U] = {
.timer = TIM3,
.pin_a_port = GPIOA, .pin_a = 6U, .pin_a_af = GPIO_AF2_TIM3,
.pin_b_port = GPIOA, .pin_b = 7U, .pin_b_af = GPIO_AF2_TIM3,
.direction = 1,
.counts_per_output_rev = 44U * 90U,
.min_dt_us = 250U,
.speed_alpha = 0.2f,
.filter = 3U,
},
};
static motor_encoder_state_t motor_encoders[BODY_MOTOR_COUNT] = {
{ .config = &motor_encoder_config[0] },
{ .config = &motor_encoder_config[1] },
};
static void motor_encoder_configure_gpio(const motor_encoder_config_t *cfg) {
set_gpio_pullup(cfg->pin_a_port, cfg->pin_a, PULL_UP);
set_gpio_output_type(cfg->pin_a_port, cfg->pin_a, OUTPUT_TYPE_PUSH_PULL);
set_gpio_alternate(cfg->pin_a_port, cfg->pin_a, cfg->pin_a_af);
set_gpio_pullup(cfg->pin_b_port, cfg->pin_b, PULL_UP);
set_gpio_output_type(cfg->pin_b_port, cfg->pin_b, OUTPUT_TYPE_PUSH_PULL);
set_gpio_alternate(cfg->pin_b_port, cfg->pin_b, cfg->pin_b_af);
}
static void motor_encoder_configure_timer(motor_encoder_state_t *state) {
const motor_encoder_config_t *cfg = state->config;
TIM_TypeDef *timer = cfg->timer;
timer->CR1 = 0U;
timer->CR2 = 0U;
timer->SMCR = 0U;
timer->DIER = 0U;
timer->SR = 0U;
timer->CCMR1 = (TIM_CCMR1_CC1S_0) | (TIM_CCMR1_CC2S_0) | (cfg->filter << TIM_CCMR1_IC1F_Pos) | (cfg->filter << TIM_CCMR1_IC2F_Pos);
timer->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E;
timer->PSC = 0U;
timer->ARR = 0xFFFFU;
timer->CNT = 0U;
state->last_timer_count = 0U;
state->accumulated_count = 0;
state->last_speed_count = 0;
state->cached_speed_rps = 0.0f;
timer->SMCR = (TIM_SMCR_SMS_0 | TIM_SMCR_SMS_1);
timer->CR1 = TIM_CR1_CEN;
}
static void motor_encoder_init(void) {
register_set_bits(&(RCC->APB1LENR), RCC_APB1LENR_TIM4EN | RCC_APB1LENR_TIM3EN);
register_set_bits(&(RCC->APB1LRSTR), RCC_APB1LRSTR_TIM4RST | RCC_APB1LRSTR_TIM3RST);
register_clear_bits(&(RCC->APB1LRSTR), RCC_APB1LRSTR_TIM4RST | RCC_APB1LRSTR_TIM3RST);
for (uint8_t i = 0U; i < BODY_MOTOR_COUNT; i++) {
motor_encoder_state_t *state = &motor_encoders[i];
const motor_encoder_config_t *cfg = state->config;
motor_encoder_configure_gpio(cfg);
motor_encoder_configure_timer(state);
state->last_speed_timestamp_us = 0U;
}
}
static inline int32_t motor_encoder_refresh(motor_encoder_state_t *state) {
const motor_encoder_config_t *cfg = state->config;
TIM_TypeDef *timer = cfg->timer;
uint16_t raw = (uint16_t)timer->CNT;
int32_t delta = (int16_t)(raw - state->last_timer_count);
delta *= cfg->direction;
state->last_timer_count = raw;
state->accumulated_count += delta;
return state->accumulated_count;
}
static inline int32_t motor_encoder_get_position(uint8_t motor) {
if (!body_motor_is_valid(motor)) {
return 0;
}
motor_encoder_state_t *state = &motor_encoders[motor - 1U];
return motor_encoder_refresh(state);
}
static void motor_encoder_reset(uint8_t motor) {
if (!body_motor_is_valid(motor)) {
return;
}
motor_encoder_state_t *state = &motor_encoders[motor - 1U];
state->config->timer->CNT = 0U;
state->last_timer_count = 0U;
state->accumulated_count = 0;
state->last_speed_count = 0;
state->last_speed_timestamp_us = 0U;
state->cached_speed_rps = 0.0f;
}
static float motor_encoder_get_speed_rpm(uint8_t motor) {
if (!body_motor_is_valid(motor)) {
return 0.0f;
}
motor_encoder_state_t *state = &motor_encoders[motor - 1U];
const motor_encoder_config_t *cfg = state->config;
motor_encoder_refresh(state);
uint32_t now = microsecond_timer_get();
if (state->last_speed_timestamp_us == 0U) {
state->last_speed_timestamp_us = now;
state->last_speed_count = state->accumulated_count;
state->cached_speed_rps = 0.0f;
return 0.0f;
}
uint32_t dt = now - state->last_speed_timestamp_us;
int32_t delta = state->accumulated_count - state->last_speed_count;
if ((dt < cfg->min_dt_us) || (delta == 0)) {
return state->cached_speed_rps * 60.0f;
}
state->last_speed_count = state->accumulated_count;
state->last_speed_timestamp_us = now;
float counts_per_second = ((float)delta * 1000000.0f) / (float)dt;
float new_speed_rps = (cfg->counts_per_output_rev != 0U) ? (counts_per_second / (float)cfg->counts_per_output_rev) : 0.0f;
state->cached_speed_rps += cfg->speed_alpha * (new_speed_rps - state->cached_speed_rps);
return state->cached_speed_rps * 60.0f;
}

View File

@@ -0,0 +1,9 @@
#include "board/body/boards/board_declarations.h"
#include "board/body/boards/board_body.h"
extern board *current_board;
extern uint8_t hw_type;
void detect_board_type(void) {
// Board type set explicitly in main()
}

View File

@@ -2,7 +2,36 @@
#define CODEC_I2C_ADDR 0x10
void fake_siren_init(void);
void siren_tim7_init(void) {
// Init trigger timer (around 2.5kHz)
register_set(&TIM7->PSC, 0U, 0xFFFFU);
register_set(&TIM7->ARR, 133U, 0xFFFFU);
register_set(&TIM7->CR2, (0b10U << TIM_CR2_MMS_Pos), TIM_CR2_MMS_Msk);
register_set(&TIM7->CR1, TIM_CR1_ARPE | TIM_CR1_URS, 0x088EU);
TIM7->SR = 0U;
TIM7->CR1 |= TIM_CR1_CEN;
}
void siren_dac_init(void) {
DAC1->DHR8R1 = (1U << 7);
DAC1->DHR8R2 = (1U << 7);
register_set(&DAC1->MCR, 0U, 0xFFFFFFFFU);
register_set(&DAC1->CR, DAC_CR_TEN1 | (6U << DAC_CR_TSEL1_Pos) | DAC_CR_DMAEN1, 0xFFFFFFFFU);
register_set_bits(&DAC1->CR, DAC_CR_EN1 | DAC_CR_EN2);
}
void siren_dma_init(void) {
// 1Vpp sine wave with 1V offset
static const uint8_t fake_siren_lut[360] = { 134U, 135U, 137U, 138U, 139U, 140U, 141U, 143U, 144U, 145U, 146U, 148U, 149U, 150U, 151U, 152U, 154U, 155U, 156U, 157U, 158U, 159U, 160U, 162U, 163U, 164U, 165U, 166U, 167U, 168U, 169U, 170U, 171U, 172U, 174U, 175U, 176U, 177U, 177U, 178U, 179U, 180U, 181U, 182U, 183U, 184U, 185U, 186U, 186U, 187U, 188U, 189U, 190U, 190U, 191U, 192U, 193U, 193U, 194U, 195U, 195U, 196U, 196U, 197U, 197U, 198U, 199U, 199U, 199U, 200U, 200U, 201U, 201U, 202U, 202U, 202U, 203U, 203U, 203U, 203U, 204U, 204U, 204U, 204U, 204U, 204U, 204U, 205U, 205U, 205U, 205U, 205U, 205U, 205U, 204U, 204U, 204U, 204U, 204U, 204U, 204U, 203U, 203U, 203U, 203U, 202U, 202U, 202U, 201U, 201U, 200U, 200U, 199U, 199U, 199U, 198U, 197U, 197U, 196U, 196U, 195U, 195U, 194U, 193U, 193U, 192U, 191U, 190U, 190U, 189U, 188U, 187U, 186U, 186U, 185U, 184U, 183U, 182U, 181U, 180U, 179U, 178U, 177U, 177U, 176U, 175U, 174U, 172U, 171U, 170U, 169U, 168U, 167U, 166U, 165U, 164U, 163U, 162U, 160U, 159U, 158U, 157U, 156U, 155U, 154U, 152U, 151U, 150U, 149U, 148U, 146U, 145U, 144U, 143U, 141U, 140U, 139U, 138U, 137U, 135U, 134U, 133U, 132U, 130U, 129U, 128U, 127U, 125U, 124U, 123U, 122U, 121U, 119U, 118U, 117U, 116U, 115U, 113U, 112U, 111U, 110U, 109U, 108U, 106U, 105U, 104U, 103U, 102U, 101U, 100U, 99U, 98U, 97U, 96U, 95U, 94U, 93U, 92U, 91U, 90U, 89U, 88U, 87U, 86U, 85U, 84U, 83U, 82U, 82U, 81U, 80U, 79U, 78U, 78U, 77U, 76U, 76U, 75U, 74U, 74U, 73U, 72U, 72U, 71U, 71U, 70U, 70U, 69U, 69U, 68U, 68U, 67U, 67U, 67U, 66U, 66U, 66U, 65U, 65U, 65U, 65U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 63U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 65U, 65U, 65U, 65U, 66U, 66U, 66U, 67U, 67U, 67U, 68U, 68U, 69U, 69U, 70U, 70U, 71U, 71U, 72U, 72U, 73U, 74U, 74U, 75U, 76U, 76U, 77U, 78U, 78U, 79U, 80U, 81U, 82U, 82U, 83U, 84U, 85U, 86U, 87U, 88U, 89U, 90U, 91U, 92U, 93U, 94U, 95U, 96U, 97U, 98U, 99U, 100U, 101U, 102U, 103U, 104U, 105U, 106U, 108U, 109U, 110U, 111U, 112U, 113U, 115U, 116U, 117U, 118U, 119U, 121U, 122U, 123U, 124U, 125U, 127U, 128U, 129U, 130U, 132U, 133U };
// Setup DMAMUX (DAC_CH1_DMA as input)
register_set(&DMAMUX1_Channel1->CCR, 67U, DMAMUX_CxCR_DMAREQ_ID_Msk);
register_set(&DMA1_Stream1->PAR, (uint32_t)&(DAC1->DHR8R1), 0xFFFFFFFFU);
// Setup DMA
register_set(&DMA1_Stream1->M0AR, (uint32_t)fake_siren_lut, 0xFFFFFFFFU);
register_set(&DMA1_Stream1->FCR, 0U, 0x00000083U);
DMA1_Stream1->NDTR = sizeof(fake_siren_lut);
DMA1_Stream1->CR = (0b11UL << DMA_SxCR_PL_Pos) | DMA_SxCR_MINC | DMA_SxCR_CIRC | (1U << DMA_SxCR_DIR_Pos);
}
void fake_siren_codec_enable(bool enabled) {
if (enabled) {
@@ -28,13 +57,21 @@ void fake_siren_codec_enable(bool enabled) {
}
}
static void fake_i2c_siren_init(void) {
siren_dac_init();
siren_dma_init();
siren_tim7_init();
// Enable the I2C to the codec
i2c_init(I2C5);
fake_siren_codec_enable(false);
}
void fake_siren_set(bool enabled) {
void fake_i2c_siren_set(bool enabled) {
static bool initialized = false;
static bool fake_siren_enabled = false;
if (!initialized) {
fake_siren_init();
fake_i2c_siren_init();
initialized = true;
}
@@ -50,35 +87,29 @@ void fake_siren_set(bool enabled) {
fake_siren_enabled = enabled;
}
void fake_siren_init(void) {
// 1Vpp sine wave with 1V offset
static const uint8_t fake_siren_lut[360] = { 134U, 135U, 137U, 138U, 139U, 140U, 141U, 143U, 144U, 145U, 146U, 148U, 149U, 150U, 151U, 152U, 154U, 155U, 156U, 157U, 158U, 159U, 160U, 162U, 163U, 164U, 165U, 166U, 167U, 168U, 169U, 170U, 171U, 172U, 174U, 175U, 176U, 177U, 177U, 178U, 179U, 180U, 181U, 182U, 183U, 184U, 185U, 186U, 186U, 187U, 188U, 189U, 190U, 190U, 191U, 192U, 193U, 193U, 194U, 195U, 195U, 196U, 196U, 197U, 197U, 198U, 199U, 199U, 199U, 200U, 200U, 201U, 201U, 202U, 202U, 202U, 203U, 203U, 203U, 203U, 204U, 204U, 204U, 204U, 204U, 204U, 204U, 205U, 205U, 205U, 205U, 205U, 205U, 205U, 204U, 204U, 204U, 204U, 204U, 204U, 204U, 203U, 203U, 203U, 203U, 202U, 202U, 202U, 201U, 201U, 200U, 200U, 199U, 199U, 199U, 198U, 197U, 197U, 196U, 196U, 195U, 195U, 194U, 193U, 193U, 192U, 191U, 190U, 190U, 189U, 188U, 187U, 186U, 186U, 185U, 184U, 183U, 182U, 181U, 180U, 179U, 178U, 177U, 177U, 176U, 175U, 174U, 172U, 171U, 170U, 169U, 168U, 167U, 166U, 165U, 164U, 163U, 162U, 160U, 159U, 158U, 157U, 156U, 155U, 154U, 152U, 151U, 150U, 149U, 148U, 146U, 145U, 144U, 143U, 141U, 140U, 139U, 138U, 137U, 135U, 134U, 133U, 132U, 130U, 129U, 128U, 127U, 125U, 124U, 123U, 122U, 121U, 119U, 118U, 117U, 116U, 115U, 113U, 112U, 111U, 110U, 109U, 108U, 106U, 105U, 104U, 103U, 102U, 101U, 100U, 99U, 98U, 97U, 96U, 95U, 94U, 93U, 92U, 91U, 90U, 89U, 88U, 87U, 86U, 85U, 84U, 83U, 82U, 82U, 81U, 80U, 79U, 78U, 78U, 77U, 76U, 76U, 75U, 74U, 74U, 73U, 72U, 72U, 71U, 71U, 70U, 70U, 69U, 69U, 68U, 68U, 67U, 67U, 67U, 66U, 66U, 66U, 65U, 65U, 65U, 65U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 63U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 64U, 65U, 65U, 65U, 65U, 66U, 66U, 66U, 67U, 67U, 67U, 68U, 68U, 69U, 69U, 70U, 70U, 71U, 71U, 72U, 72U, 73U, 74U, 74U, 75U, 76U, 76U, 77U, 78U, 78U, 79U, 80U, 81U, 82U, 82U, 83U, 84U, 85U, 86U, 87U, 88U, 89U, 90U, 91U, 92U, 93U, 94U, 95U, 96U, 97U, 98U, 99U, 100U, 101U, 102U, 103U, 104U, 105U, 106U, 108U, 109U, 110U, 111U, 112U, 113U, 115U, 116U, 117U, 118U, 119U, 121U, 122U, 123U, 124U, 125U, 127U, 128U, 129U, 130U, 132U, 133U };
void fake_siren_set(bool enabled) {
static bool initialized = false;
static bool fake_siren_enabled = false;
// Init DAC
register_set(&DAC1->MCR, 0U, 0xFFFFFFFFU);
register_set(&DAC1->CR, DAC_CR_TEN1 | (6U << DAC_CR_TSEL1_Pos) | DAC_CR_DMAEN1, 0xFFFFFFFFU);
register_set_bits(&DAC1->CR, DAC_CR_EN1);
if (!initialized) {
siren_tim7_init();
initialized = true;
}
// Setup DMAMUX (DAC_CH1_DMA as input)
register_set(&DMAMUX1_Channel1->CCR, 67U, DMAMUX_CxCR_DMAREQ_ID_Msk);
// Setup DMA
register_set(&DMA1_Stream1->M0AR, (uint32_t) fake_siren_lut, 0xFFFFFFFFU);
register_set(&DMA1_Stream1->PAR, (uint32_t) &(DAC1->DHR8R1), 0xFFFFFFFFU);
DMA1_Stream1->NDTR = sizeof(fake_siren_lut);
register_set(&DMA1_Stream1->FCR, 0U, 0x00000083U);
DMA1_Stream1->CR = (0b11UL << DMA_SxCR_PL_Pos);
DMA1_Stream1->CR |= DMA_SxCR_MINC | DMA_SxCR_CIRC | (1U << DMA_SxCR_DIR_Pos);
// Init trigger timer (around 2.5kHz)
register_set(&TIM7->PSC, 0U, 0xFFFFU);
register_set(&TIM7->ARR, 133U, 0xFFFFU);
register_set(&TIM7->CR2, (0b10U << TIM_CR2_MMS_Pos), TIM_CR2_MMS_Msk);
register_set(&TIM7->CR1, TIM_CR1_ARPE | TIM_CR1_URS, 0x088EU);
TIM7->SR = 0U;
TIM7->CR1 |= TIM_CR1_CEN;
// Enable the I2C to the codec
i2c_init(I2C5);
fake_siren_codec_enable(false);
if (enabled != fake_siren_enabled) {
if (enabled) {
sound_stop_dac();
siren_dac_init();
siren_dma_init();
current_board->set_amp_enabled(true);
register_set_bits(&DMA1_Stream1->CR, DMA_SxCR_EN);
} else {
current_board->set_amp_enabled(false);
// Stop modified 8-bit DAC and start normal 12-bit DAC
sound_stop_dac();
sound_init_dac();
register_set_bits(&BDMA_Channel0->CCR, BDMA_CCR_EN);
}
fake_siren_enabled = enabled;
}
}

View File

@@ -9,8 +9,8 @@
#include "board/drivers/harness.h"
#include "board/drivers/fan.h"
#include "board/stm32h7/llfan.h"
#include "board/drivers/fake_siren.h"
#include "board/stm32h7/sound.h"
#include "board/drivers/fake_siren.h"
#include "board/drivers/clock_source.h"
#include "board/boards/red.h"
#include "board/boards/tres.h"

View File

@@ -5,10 +5,13 @@
__attribute__((section(".sram4"))) static uint16_t sound_rx_buf[2][SOUND_RX_BUF_SIZE];
__attribute__((section(".sram4"))) static uint16_t sound_tx_buf[2][SOUND_TX_BUF_SIZE];
__attribute__((section(".sram4"))) static uint32_t mic_rx_buf[2][MIC_RX_BUF_SIZE];
__attribute__((section(".sram4"))) static uint16_t mic_tx_buf[2][MIC_TX_BUF_SIZE];
#define SOUND_IDLE_TIMEOUT 4U
#define MIC_SKIP_BUFFERS 2U // Skip first 2 buffers (1024 samples = ~21ms at 48kHz)
static uint8_t sound_idle_count;
static uint8_t mic_idle_count;
static uint8_t mic_buffer_count;
void sound_tick(void) {
if (sound_idle_count > 0U) {
@@ -23,28 +26,31 @@ void sound_tick(void) {
mic_idle_count--;
if (mic_idle_count == 0U) {
register_clear_bits(&DFSDM1_Channel0->CHCFGR1, DFSDM_CHCFGR1_DFSDMEN);
mic_buffer_count = 0U;
}
}
}
// Recording processing
static void DMA1_Stream0_IRQ_Handler(void) {
__attribute__((section(".sram4"))) static uint16_t tx_buf[MIC_TX_BUF_SIZE];
DMA1->LIFCR |= 0x7DU; // clear flags
DMA1->LIFCR |= 0x7D; // clear flags
uint8_t tx_buf_idx = (((BDMA_Channel1->CCR & BDMA_CCR_CT) >> BDMA_CCR_CT_Pos) == 1U) ? 0U : 1U;
// process samples
uint8_t buf_idx = (((DMA1_Stream0->CR & DMA_SxCR_CT) >> DMA_SxCR_CT_Pos) == 1U) ? 0U : 1U;
for (uint16_t i=0U; i < MIC_RX_BUF_SIZE; i++) {
tx_buf[2U*i] = ((mic_rx_buf[buf_idx][i] >> 16U) & 0xFFFFU);
tx_buf[(2U*i)+1U] = tx_buf[2U*i];
if (mic_buffer_count < MIC_SKIP_BUFFERS) {
// Send silence during settling
mic_buffer_count++;
for (uint16_t i = 0U; i < MIC_TX_BUF_SIZE; i++) {
mic_tx_buf[tx_buf_idx][i] = 0U;
}
} else {
// process samples
uint8_t buf_idx = (((DMA1_Stream0->CR & DMA_SxCR_CT) >> DMA_SxCR_CT_Pos) == 1U) ? 0U : 1U;
for (uint16_t i=0U; i < MIC_RX_BUF_SIZE; i++) {
mic_tx_buf[tx_buf_idx][2U*i] = ((mic_rx_buf[buf_idx][i] >> 16U) & 0xFFFFU);
mic_tx_buf[tx_buf_idx][(2U*i)+1U] = mic_tx_buf[tx_buf_idx][2U*i];
}
}
BDMA->IFCR |= BDMA_IFCR_CGIF1;
BDMA_Channel1->CCR &= ~BDMA_CCR_EN;
register_set(&BDMA_Channel1->CM0AR, (uint32_t) tx_buf, 0xFFFFFFFFU);
BDMA_Channel1->CNDTR = MIC_TX_BUF_SIZE;
BDMA_Channel1->CCR |= BDMA_CCR_EN;
}
// Playback processing
@@ -59,7 +65,7 @@ static void BDMA_Channel0_IRQ_Handler(void) {
// wait until we're done playing the current buf
for (uint32_t timeout_counter = 100000U; timeout_counter > 0U; timeout_counter--){
uint8_t playing_buf = (DMA1_Stream1->CR & DMA_SxCR_CT) >> DMA_SxCR_CT_Pos;
if ((playing_buf != playback_buf) || (!(DMA1_Stream1->CR & DMA_SxCR_EN))) {
if ((playing_buf != playback_buf) || ((DMA1_Stream1->CR & DMA_SxCR_EN) == 0U)) {
break;
}
}
@@ -100,10 +106,7 @@ static void BDMA_Channel0_IRQ_Handler(void) {
sound_tick();
}
void sound_init(void) {
REGISTER_INTERRUPT(BDMA_Channel0_IRQn, BDMA_Channel0_IRQ_Handler, 128U, FAULT_INTERRUPT_RATE_SOUND_DMA)
REGISTER_INTERRUPT(DMA1_Stream0_IRQn, DMA1_Stream0_IRQ_Handler, 128U, FAULT_INTERRUPT_RATE_SOUND_DMA)
void sound_init_dac(void) {
// Init DAC
DAC1->DHR12R1 = (1UL << 11);
DAC1->DHR12R2 = (1UL << 11);
@@ -121,10 +124,30 @@ void sound_init(void) {
register_set(&DMA1_Stream1->FCR, 0U, 0x00000083U);
DMA1_Stream1->NDTR = SOUND_TX_BUF_SIZE;
DMA1_Stream1->CR = DMA_SxCR_DBM | (0b11UL << DMA_SxCR_PL_Pos) | (0b01UL << DMA_SxCR_MSIZE_Pos) | (0b01UL << DMA_SxCR_PSIZE_Pos) | DMA_SxCR_MINC | (1U << DMA_SxCR_DIR_Pos);
}
static void sound_stop_dac(void) {
register_clear_bits(&BDMA_Channel0->CCR, BDMA_CCR_EN);
BDMA->IFCR = 0xFFFFFFFFU;
register_clear_bits(&DMA1_Stream1->CR, DMA_SxCR_EN);
while ((DMA1_Stream1->CR & DMA_SxCR_EN) != 0U) {}
DMA1->LIFCR = (0x3FU << 6);
register_clear_bits(&DAC1->CR, DAC_CR_EN1 | DAC_CR_EN2);
while ((DAC1->CR & (DAC_CR_EN1 | DAC_CR_EN2)) != 0U) {}
}
void sound_init(void) {
REGISTER_INTERRUPT(BDMA_Channel0_IRQn, BDMA_Channel0_IRQ_Handler, 128U, FAULT_INTERRUPT_RATE_SOUND_DMA)
REGISTER_INTERRUPT(DMA1_Stream0_IRQn, DMA1_Stream0_IRQ_Handler, 128U, FAULT_INTERRUPT_RATE_SOUND_DMA)
// Init DAC and its DMA
sound_init_dac();
// Init trigger timer (little slower than 48kHz, pulled in sync by SAI4_FS_B)
register_set(&TIM5->PSC, 2600U, 0xFFFFU);
register_set(&TIM5->ARR, 100U, 0xFFFFFFFFU); // not important
register_set(&TIM5->ARR, 100U, 0xFFFFFFFFU);
register_set(&TIM5->AF1, (0b0010UL << TIM5_AF1_ETRSEL_Pos), TIM5_AF1_ETRSEL_Msk);
register_set(&TIM5->CR2, (0b010U << TIM_CR2_MMS_Pos), TIM_CR2_MMS_Msk);
register_set(&TIM5->SMCR, TIM_SMCR_ECE | (0b00111UL << TIM_SMCR_TS_Pos)| (0b0100UL << TIM_SMCR_SMS_Pos), 0x31FFF7U);
@@ -169,12 +192,16 @@ void sound_init(void) {
register_set(&DMA1_Stream0->CR, DMA_SxCR_DBM | (0b10UL << DMA_SxCR_MSIZE_Pos) | (0b10UL << DMA_SxCR_PSIZE_Pos) | DMA_SxCR_MINC | DMA_SxCR_CIRC | DMA_SxCR_TCIE, 0x01F7FFFFU);
register_set(&DMAMUX1_Channel0->CCR, 101U, DMAMUX_CxCR_DMAREQ_ID_Msk); // DFSDM1_DMA0
register_set_bits(&DMA1_Stream0->CR, DMA_SxCR_EN);
DMA1->LIFCR |= 0x7D; // clear flags
DMA1->LIFCR |= 0x7DU; // clear flags
// DMA (memory -> SAI4)
register_set(&BDMA_Channel1->CPAR, (uint32_t) &(SAI4_Block_A->DR), 0xFFFFFFFFU);
register_set(&BDMA_Channel1->CCR, (0b01UL << BDMA_CCR_MSIZE_Pos) | (0b01UL << BDMA_CCR_PSIZE_Pos) | BDMA_CCR_MINC | (0b1U << BDMA_CCR_DIR_Pos), 0xFFFEU);
register_set(&BDMA_Channel1->CM0AR, (uint32_t) mic_tx_buf[0], 0xFFFFFFFFU);
register_set(&BDMA_Channel1->CM1AR, (uint32_t) mic_tx_buf[1], 0xFFFFFFFFU);
BDMA_Channel1->CNDTR = MIC_TX_BUF_SIZE;
register_set(&BDMA_Channel1->CCR, BDMA_CCR_DBM | (0b01UL << BDMA_CCR_MSIZE_Pos) |(0b01UL << BDMA_CCR_PSIZE_Pos) | BDMA_CCR_MINC | BDMA_CCR_CIRC | (0b1U << BDMA_CCR_DIR_Pos), 0xFFFFU);
register_set(&DMAMUX2_Channel1->CCR, 15U, DMAMUX_CxCR_DMAREQ_ID_Msk); // SAI4_A_DMA
register_set_bits(&BDMA_Channel1->CCR, BDMA_CCR_EN);
// enable all initted blocks
register_set_bits(&SAI4_Block_A->CR1, SAI_xCR1_SAIEN);

View File

@@ -71,6 +71,8 @@ separate IRQs for RX and TX.
#ifdef PANDA_JUNGLE
#include "board/jungle/stm32h7/board.h"
#elif defined(PANDA_BODY)
#include "board/body/stm32h7/board.h"
#else
#include "board/stm32h7/board.h"
#endif

View File

@@ -30,7 +30,6 @@ dev = [
"mypy",
"setuptools",
"spidev; platform_system == 'Linux'",
"spidev2; platform_system == 'Linux'",
]
[build-system]
@@ -73,4 +72,4 @@ addopts = "-Werror --strict-config --strict-markers --durations=10 --ignore-glob
python_files = "test_*.py"
testpaths = [
"tests/"
]
]

View File

@@ -116,6 +116,7 @@ class Panda:
HW_TYPE_RED_PANDA = b'\x07'
HW_TYPE_TRES = b'\x09'
HW_TYPE_CUATRO = b'\x0a'
HW_TYPE_BODY = b'\xb1'
CAN_PACKET_VERSION = 4
HEALTH_PACKET_VERSION = 17
@@ -124,7 +125,7 @@ class Panda:
CAN_HEALTH_STRUCT = struct.Struct("<BIBBBBBBBBIIIIIIIHHBBBIIII")
F4_DEVICES = [HW_TYPE_WHITE, HW_TYPE_BLACK]
H7_DEVICES = [HW_TYPE_RED_PANDA, HW_TYPE_TRES, HW_TYPE_CUATRO]
H7_DEVICES = [HW_TYPE_RED_PANDA, HW_TYPE_TRES, HW_TYPE_CUATRO, HW_TYPE_BODY]
SUPPORTED_DEVICES = H7_DEVICES
INTERNAL_DEVICES = (HW_TYPE_TRES, HW_TYPE_CUATRO)
@@ -743,14 +744,14 @@ class Panda:
# ******************* serial *******************
def serial_read(self, port_number):
ret = []
def serial_read(self, port_number, maxlen=1024):
ret = b''
while 1:
lret = bytes(self._handle.controlRead(Panda.REQUEST_IN, 0xe0, port_number, 0, 0x40))
if len(lret) == 0:
r = bytes(self._handle.controlRead(Panda.REQUEST_IN, 0xe0, port_number, 0, 0x40))
if len(r) == 0 or len(ret) >= maxlen:
break
ret.append(lret)
return b''.join(ret)
ret += r
return ret
def serial_write(self, port_number, ln):
ret = 0

View File

@@ -1,5 +1,6 @@
import socket
import struct
import time
# /**
# * struct canfd_frame - CAN flexible data rate frame structure
@@ -23,6 +24,9 @@ CAN_HEADER_LEN = struct.calcsize(CAN_HEADER_FMT)
CAN_MAX_DLEN = 8
CANFD_MAX_DLEN = 64
CAN_CONFIRM_FLAG = 0x800
CAN_EFF_FLAG = 0x80000000
CANFD_BRS = 0x01 # bit rate switch (second bitrate for payload data)
CANFD_FDF = 0x04 # mark CAN FD for dual use of struct canfd_frame
@@ -32,11 +36,12 @@ SO_RXQ_OVFL = 40
import typing
@typing.no_type_check # mypy struggles with macOS here...
def create_socketcan(interface:str, recv_buffer_size:int, fd:bool) -> socket.socket:
def create_socketcan(interface:str, recv_buffer_size:int) -> socket.socket:
# settings mostly from https://github.com/linux-can/can-utils/blob/master/candump.c
socketcan = socket.socket(socket.AF_CAN, socket.SOCK_RAW, socket.CAN_RAW)
if fd:
socketcan.setsockopt(socket.SOL_CAN_RAW, socket.CAN_RAW_FD_FRAMES, 1)
socketcan.setblocking(False)
socketcan.setsockopt(socket.SOL_CAN_RAW, socket.CAN_RAW_FD_FRAMES, 1)
socketcan.setsockopt(socket.SOL_CAN_RAW, socket.CAN_RAW_RECV_OWN_MSGS, 1)
socketcan.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, recv_buffer_size)
# TODO: why is it always 2x the requested size?
assert socketcan.getsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF) == recv_buffer_size * 2
@@ -47,50 +52,72 @@ def create_socketcan(interface:str, recv_buffer_size:int, fd:bool) -> socket.soc
# Panda class substitute for socketcan device (to support using the uds/iso-tp/xcp/ccp library)
class SocketPanda():
def __init__(self, interface:str="can0", bus:int=0, fd:bool=False, recv_buffer_size:int=212992) -> None:
def __init__(self, interface:str="can0", recv_buffer_size:int=212992) -> None:
self.interface = interface
self.bus = bus
self.fd = fd
self.flags = CANFD_BRS | CANFD_FDF if fd else 0
self.data_len = CANFD_MAX_DLEN if fd else CAN_MAX_DLEN
self.recv_buffer_size = recv_buffer_size
self.socket = create_socketcan(interface, recv_buffer_size, fd)
self.socket = create_socketcan(interface, recv_buffer_size)
def __del__(self):
self.socket.close()
def get_serial(self) -> tuple[int, int]:
return (0, 0) # TODO: implemented in panda socketcan driver
return (0, 0)
def get_version(self) -> int:
return 0 # TODO: implemented in panda socketcan driver
return 0
def can_clear(self, bus:int) -> None:
# TODO: implemented in panda socketcan driver
self.socket.close()
self.socket = create_socketcan(self.interface, self.recv_buffer_size, self.fd)
self.socket = create_socketcan(self.interface, self.recv_buffer_size)
def set_safety_mode(self, mode:int, param=0) -> None:
pass # TODO: implemented in panda socketcan driver
pass
def has_obd(self) -> bool:
return False # TODO: implemented in panda socketcan driver
def can_send_many(self, arr, *, fd=False, timeout=0) -> None:
for msg in arr:
self.can_send(*msg, fd=fd, timeout=timeout)
def can_send(self, addr, dat, bus=0, timeout=0) -> None:
def can_send(self, addr, dat, bus, *, fd=False, timeout=0) -> None:
# Even if the CANFD_FDF flag is not set, the data still must be 8 bytes for classic CAN frames.
data_len = CANFD_MAX_DLEN if fd else CAN_MAX_DLEN
msg_len = len(dat)
msg_dat = dat.ljust(self.data_len, b'\x00')
can_frame = struct.pack(CAN_HEADER_FMT, addr, msg_len, self.flags) + msg_dat
self.socket.sendto(can_frame, (self.interface,))
msg_dat = dat.ljust(data_len, b'\x00')
# Set extended ID flag
if addr > 0x7ff:
addr |= CAN_EFF_FLAG
# Set FD flags
flags = CANFD_BRS | CANFD_FDF if fd else 0
can_frame = struct.pack(CAN_HEADER_FMT, addr, msg_len, flags) + msg_dat
# Try to send until timeout. sendto might block if the TX buffer is full.
# TX buffer size can also be adjusted through `ip link set can0 txqueuelen <size>` if needed
start_t = time.monotonic()
while (time.monotonic() - start_t < (timeout / 1000)) or (timeout == 0):
try:
self.socket.sendto(can_frame, (self.interface,))
break
except (BlockingIOError, OSError):
continue
else:
raise TimeoutError
def can_recv(self) -> list[tuple[int, bytes, int]]:
msgs = list()
while True:
try:
dat, _ = self.socket.recvfrom(self.recv_buffer_size, socket.MSG_DONTWAIT)
assert len(dat) == CAN_HEADER_LEN + self.data_len, f"ERROR: received {len(dat)} bytes"
dat, _, msg_flags, _ = self.socket.recvmsg(self.recv_buffer_size)
assert len(dat) >= CAN_HEADER_LEN, f"ERROR: received {len(dat)} bytes"
can_id, msg_len, _ = struct.unpack(CAN_HEADER_FMT, dat[:CAN_HEADER_LEN])
assert len(dat) >= CAN_HEADER_LEN + msg_len, f"ERROR: received {len(dat)} bytes, expected at least {CAN_HEADER_LEN + msg_len} bytes"
msg_dat = dat[CAN_HEADER_LEN:CAN_HEADER_LEN+msg_len]
msgs.append((can_id, msg_dat, self.bus))
bus = 128 if (msg_flags & CAN_CONFIRM_FLAG) else 0
msgs.append((can_id, msg_dat, bus))
except BlockingIOError:
break # buffered data exhausted
return msgs

View File

@@ -16,10 +16,6 @@ try:
import spidev
except ImportError:
spidev = None
try:
import spidev2
except ImportError:
spidev2 = None
# Constants
SYNC = 0x5A
@@ -121,8 +117,7 @@ class PandaSpiHandle(BaseHandle):
def __init__(self) -> None:
self.dev = SpiDevice()
if spidev2 is not None and "SPI2" in os.environ:
self._spi2 = spidev2.SPIBus("/dev/spidev0.0", "w+b", bits_per_word=8, speed_hz=50_000_000)
self.no_retry = "NO_RETRY" in os.environ
# helpers
def _calc_checksum(self, data: bytes) -> int:
@@ -183,52 +178,6 @@ class PandaSpiHandle(BaseHandle):
return dat[3:-1]
def _transfer_spidev2(self, spi, endpoint: int, data, timeout: int, max_rx_len: int = USBPACKET_MAX_SIZE, expect_disconnect: bool = False) -> bytes:
max_rx_len = max(USBPACKET_MAX_SIZE, max_rx_len)
header = self.HEADER.pack(SYNC, endpoint, len(data), max_rx_len)
header_ack = bytearray(1)
# ACK + <2 bytes for response length> + data + checksum
data_rx = bytearray(3+max_rx_len+1)
self._spi2.submitTransferList(spidev2.SPITransferList((
# header
{'tx_buf': header + bytes([self._calc_checksum(header), ]), 'delay_usecs': 0, 'cs_change': True},
{'rx_buf': header_ack, 'delay_usecs': 0, 'cs_change': True},
# send data
{'tx_buf': bytes([*data, self._calc_checksum(data)]), 'delay_usecs': 0, 'cs_change': True},
{'rx_buf': data_rx, 'delay_usecs': 0, 'cs_change': True},
)))
if header_ack[0] != HACK:
raise PandaSpiMissingAck
if expect_disconnect:
logger.debug("- expecting disconnect, returning")
return b""
else:
dat = bytes(data_rx)
if dat[0] != DACK:
if dat[0] == NACK:
raise PandaSpiNackResponse
print("trying again")
dat = self._wait_for_ack(spi, DACK, timeout, 0x13, length=3 + max_rx_len)
# get response length, then response
response_len = struct.unpack("<H", dat[1:3])[0]
if response_len > max_rx_len:
raise PandaSpiException(f"response length greater than max ({max_rx_len} {response_len})")
dat = dat[:3 + response_len + 1]
if self._calc_checksum(dat) != 0:
raise PandaSpiBadChecksum
return dat[3:-1]
def _transfer(self, endpoint: int, data, timeout: int, max_rx_len: int = 1000, expect_disconnect: bool = False) -> bytes:
logger.debug("starting transfer: endpoint=%d, max_rx_len=%d", endpoint, max_rx_len)
logger.debug("==============================================")
@@ -241,12 +190,12 @@ class PandaSpiHandle(BaseHandle):
logger.debug("\ntry #%d", n)
with self.dev.acquire() as spi:
try:
fn = self._transfer_spidev
#fn = self._transfer_spidev2
return fn(spi, endpoint, data, timeout, max_rx_len, expect_disconnect)
return self._transfer_spidev(spi, endpoint, data, timeout, max_rx_len, expect_disconnect)
except PandaSpiException as e:
exc = e
logger.debug("SPI transfer failed, retrying", exc_info=True)
if self.no_retry:
break
# ensure slave is in a consistent state and ready for the next transfer
# (e.g. slave TX buffer isn't stuck full)

View File

@@ -78,9 +78,12 @@ def check_space(file, mcu):
if __name__ == "__main__":
# red panda
check_space("../board/obj/bootstub.panda_h7.elf", "H7")
check_space("../board/obj/panda_h7.elf", "H7")
# panda
check_space("../board/obj/panda_h7/bootstub.elf", "H7")
check_space("../board/obj/panda_h7/main.elf", "H7")
# jungle v2
check_space("../board/jungle/obj/bootstub.panda_jungle_h7.elf", "H7")
check_space("../board/jungle/obj/panda_jungle_h7.elf", "H7")
check_space("../board/obj/panda_jungle_h7/bootstub.elf", "H7")
check_space("../board/obj/panda_jungle_h7/main.elf", "H7")
# body
check_space("../board/obj/body_h7/bootstub.elf", "H7")
check_space("../board/obj/body_h7/main.elf", "H7")

View File

@@ -1,18 +0,0 @@
#!/usr/bin/env python3
import time
from panda import Panda
if __name__ == "__main__":
i = 0
pi = 0
panda = Panda()
while True:
st = time.monotonic()
while time.monotonic() - st < 1:
panda.health()
i += 1
print(i, panda.health(), "\n")
print(f"Speed: {i - pi}Hz")
pi = i

50
scripts/spi_test.py Executable file
View File

@@ -0,0 +1,50 @@
#!/usr/bin/env python3
import os
import sys
import time
from datetime import datetime
from collections import defaultdict, deque
os.environ['NO_RETRY'] = '1' # no spi retries
from panda import Panda, PandaSpiException
if __name__ == "__main__":
s = defaultdict(lambda: deque(maxlen=30))
def avg(k):
return sum(s[k])/len(s[k])
#core = 6
#from openpilot.common.realtime import config_realtime_process
#config_realtime_process(core, 10)
#os.system(f"echo {core} | sudo tee /proc/irq/10/smp_affinity_list")
#os.system("sudo chrt -f -p 1 $(pgrep -f spi0)")
#print(f"sudo taskset -pc {core} $(pgrep -f spi0)")
#os.system(f"sudo taskset -pc {core} $(pgrep -f spi0)")
p = Panda()
p.reset()
start = datetime.now()
le = p.health()['spi_error_count']
while True:
cnt = 0
st = time.monotonic()
while time.monotonic() - st < 1:
try:
p.get_type() # get_type has no processing on panda side
except PandaSpiException:
print(f"ERROR after {datetime.now() - start}\n\n")
sys.stdout.write("\033[1;32;40m" + p.serial_read(0).decode('utf8') + "\033[00m" + "\n")
sys.stdout.flush()
sys.exit()
cnt += 1
s['hz'].append(cnt)
err = p.health()['spi_error_count']
s['err'].append((err - le) & 0xFFFFFFFF)
le = err
print(
f"{avg('hz'):04.0f}Hz {avg('err'):04.0f} errors [{cnt:04d}Hz {s['err'][-1]:04d} errors] {datetime.now() - start}"
)

View File

@@ -13,6 +13,7 @@ ROOT = os.path.join(HERE, "../../")
IGNORED_PATHS = (
'board/obj',
'board/jungle',
'board/body',
'board/stm32h7/inc',
'board/fake_stm.h',