Files
sunnypilot/selfdrive/debug/internal/test_paramsd.py
Shane Smiskol 0ceb423ccc Car interface: require fingerprint and FW versions to get params (#26932)
* require fingerprint and FW versions

* add get_non_essential_params()

* comment

* all required

* classmethod, need to allow subclasses to override _get_params

* fix that

* fix

* fix

* wrong fix 🤦
old-commit-hash: b00bc4f57e
2023-01-12 12:25:24 -08:00

134 lines
3.6 KiB
Python
Executable File

#!/usr/bin/env python3
# pylint: skip-file
# type: ignore
import numpy as np
import math
from tqdm import tqdm
from typing import cast
import seaborn as sns
import matplotlib.pyplot as plt
from selfdrive.car.honda.interface import CarInterface
from selfdrive.car.honda.values import CAR
from selfdrive.controls.lib.vehicle_model import VehicleModel, create_dyn_state_matrices
from selfdrive.locationd.kalman.models.car_kf import CarKalman, ObservationKind, States
T_SIM = 5 * 60 # s
DT = 0.01
CP = CarInterface.get_non_essential_params(CAR.CIVIC)
VM = VehicleModel(CP)
x, y = 0, 0 # m, m
psi = math.radians(0) # rad
# The state is x = [v, r]^T
# with v lateral speed [m/s], and r rotational speed [rad/s]
state = np.array([[0.0], [0.0]])
ts = np.arange(0, T_SIM, DT)
speeds = 10 * np.sin(2 * np.pi * ts / 200.) + 25
angle_offsets = math.radians(1.0) * np.ones_like(ts)
angle_offsets[ts > 60] = 0
steering_angles = cast(np.ndarray, np.radians(5 * np.cos(2 * np.pi * ts / 100.)))
xs = []
ys = []
psis = []
yaw_rates = []
speed_ys = []
kf_states = []
kf_ps = []
kf = CarKalman()
for i, t in tqdm(list(enumerate(ts))):
u = speeds[i]
sa = steering_angles[i]
ao = angle_offsets[i]
A, B = create_dyn_state_matrices(u, VM)
state += DT * (A.dot(state) + B.dot(sa + ao))
x += u * math.cos(psi) * DT
y += (float(state[0]) * math.sin(psi) + u * math.sin(psi)) * DT
psi += float(state[1]) * DT
kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_YAW_RATE, [float(state[1])])
kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_XY_SPEED, [[u, float(state[0])]])
kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, [sa])
kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, [0])
kf.predict(t)
speed_ys.append(float(state[0]))
yaw_rates.append(float(state[1]))
kf_states.append(kf.x.copy())
kf_ps.append(kf.P.copy())
xs.append(x)
ys.append(y)
psis.append(psi)
xs = np.asarray(xs)
ys = np.asarray(ys)
psis = np.asarray(psis)
speed_ys = np.asarray(speed_ys)
kf_states = np.asarray(kf_states)
kf_ps = np.asarray(kf_ps)
palette = sns.color_palette()
def plot_with_bands(ts, state, label, ax, idx=1, converter=None):
mean = kf_states[:, state].flatten()
stds = np.sqrt(kf_ps[:, state, state].flatten())
if converter is not None:
mean = converter(mean)
stds = converter(stds)
sns.lineplot(ts, mean, label=label, ax=ax)
ax.fill_between(ts, mean - stds, mean + stds, alpha=.2, color=palette[idx])
print(kf.x)
sns.set_context("paper")
f, axes = plt.subplots(6, 1)
sns.lineplot(ts, np.degrees(steering_angles), label='Steering Angle [deg]', ax=axes[0])
plot_with_bands(ts, States.STEER_ANGLE, 'Steering Angle kf [deg]', axes[0], converter=np.degrees)
sns.lineplot(ts, np.degrees(yaw_rates), label='Yaw Rate [deg]', ax=axes[1])
plot_with_bands(ts, States.YAW_RATE, 'Yaw Rate kf [deg]', axes[1], converter=np.degrees)
sns.lineplot(ts, np.ones_like(ts) * VM.sR, label='Steer ratio [-]', ax=axes[2])
plot_with_bands(ts, States.STEER_RATIO, 'Steer ratio kf [-]', axes[2])
axes[2].set_ylim([10, 20])
sns.lineplot(ts, np.ones_like(ts), label='Tire stiffness[-]', ax=axes[3])
plot_with_bands(ts, States.STIFFNESS, 'Tire stiffness kf [-]', axes[3])
axes[3].set_ylim([0.8, 1.2])
sns.lineplot(ts, np.degrees(angle_offsets), label='Angle offset [deg]', ax=axes[4])
plot_with_bands(ts, States.ANGLE_OFFSET, 'Angle offset kf deg', axes[4], converter=np.degrees)
plot_with_bands(ts, States.ANGLE_OFFSET_FAST, 'Fast Angle offset kf deg', axes[4], converter=np.degrees, idx=2)
axes[4].set_ylim([-2, 2])
sns.lineplot(ts, speeds, ax=axes[5])
plt.show()