Locationd: reimplement liveLocationKalman and use position_geodetic in liveMapDataSP (#1275)

* init

* desc

* llk welcome back

* more

* new param to write

* update mapd

* no migration

* no refactor for now

* exec

* rename

* bearing

* fix test

* lint
This commit is contained in:
Jason Wen
2025-09-22 23:39:55 -04:00
committed by GitHub
parent ea6178e53e
commit ecee67dd64
49 changed files with 3755 additions and 23 deletions

View File

@@ -2684,7 +2684,7 @@ struct Event {
lateralPlanDEPRECATED @64 :LateralPlan;
navModelDEPRECATED @104 :NavModelData;
uiPlanDEPRECATED @106 :UiPlan;
liveLocationKalmanDEPRECATED @72 :LiveLocationKalman;
liveLocationKalman @72 :LiveLocationKalman;
liveTracksDEPRECATED @16 :List(LiveTracksDEPRECATED);
onroadEventsDEPRECATED @68: List(Car.OnroadEventDEPRECATED);
}

View File

@@ -89,6 +89,7 @@ _services: dict[str, tuple] = {
"carStateSP": (True, 100., 10),
"liveMapDataSP": (True, 1., 1),
"modelDataV2SP": (True, 20.),
"liveLocationKalman": (True, 20.),
# debug
"uiDebug": (True, 0., 1),

View File

@@ -152,6 +152,7 @@ inline static std::unordered_map<std::string, ParamKeyAttributes> keys = {
{"IntelligentCruiseButtonManagement", {PERSISTENT | BACKUP , BOOL}},
{"InteractivityTimeout", {PERSISTENT | BACKUP, INT, "0"}},
{"IsDevelopmentBranch", {CLEAR_ON_MANAGER_START, BOOL}},
{"LastGPSPositionLLK", {PERSISTENT, STRING}},
{"MaxTimeOffroad", {PERSISTENT | BACKUP, INT, "1800"}},
{"ModelRunnerTypeCache", {CLEAR_ON_ONROAD_TRANSITION, INT}},
{"OffroadMode", {CLEAR_ON_MANAGER_START, BOOL}},

View File

@@ -28,7 +28,8 @@ MigrationFunc = Callable[[list[MessageWithIndex]], MigrationOps]
# 3. product is the message type created by the migration function, and the function will be skipped if product type already exists in lr
# 4. it must return a list of operations to be applied to the logreader (replace, add, delete)
# 5. all migration functions must be independent of each other
def migrate_all(lr: LogIterable, manager_states: bool = False, panda_states: bool = False, camera_states: bool = False):
def migrate_all(lr: LogIterable, manager_states: bool = False, panda_states: bool = False, camera_states: bool = False,
live_location_kalman: bool = True):
migrations = [
migrate_sensorEvents,
migrate_carParams,
@@ -37,7 +38,6 @@ def migrate_all(lr: LogIterable, manager_states: bool = False, panda_states: boo
migrate_carOutput,
migrate_controlsState,
migrate_carState,
migrate_liveLocationKalman,
migrate_liveTracks,
migrate_driverAssistance,
migrate_drivingModelData,
@@ -51,6 +51,8 @@ def migrate_all(lr: LogIterable, manager_states: bool = False, panda_states: boo
migrations.extend([migrate_pandaStates, migrate_peripheralState])
if camera_states:
migrations.append(migrate_cameraStates)
if live_location_kalman:
migrations.append(migrate_liveLocationKalman)
return migrate(lr, migrations)

View File

@@ -496,7 +496,7 @@ CONFIGS = [
pubs=[
"cameraOdometry", "accelerometer", "gyroscope", "liveCalibration", "carState"
],
subs=["livePose"],
subs=["liveLocationKalman", "livePose"],
ignore=["logMonoTime"],
should_recv_callback=MessageBasedRcvCallback("cameraOdometry"),
tolerance=NUMPY_TOLERANCE,

View File

@@ -1,2 +1,3 @@
SConscript(['modeld/SConscript'])
SConscript(['modeld_v2/SConscript'])
SConscript(['modeld_v2/SConscript'])
SConscript(['selfdrive/locationd/SConscript'])

View File

@@ -6,8 +6,7 @@ See the LICENSE.md file in the root directory for more details.
"""
from abc import abstractmethod, ABC
from cereal import messaging
from openpilot.common.gps import get_gps_location_service
import cereal.messaging as messaging
from openpilot.common.params import Params
from openpilot.sunnypilot.navd.helpers import coordinate_from_param
@@ -16,14 +15,12 @@ class BaseMapData(ABC):
def __init__(self):
self.params = Params()
self.gps_location_service = get_gps_location_service(self.params)
gps_packets = [self.gps_location_service]
self.sm = messaging.SubMaster(['livePose'] + gps_packets, ignore_alive=gps_packets, ignore_avg_freq=gps_packets,
ignore_valid=gps_packets, poll='livePose')
self.sm = messaging.SubMaster(['liveLocationKalman'])
self.pm = messaging.PubMaster(['liveMapDataSP'])
self.localizer_valid = False
self.last_bearing = None
self.last_position = coordinate_from_param("LastGPSPosition", self.params)
self.last_position = coordinate_from_param("LastGPSPositionLLK", self.params)
@abstractmethod
def update_location(self) -> None:
@@ -46,7 +43,7 @@ class BaseMapData(ABC):
next_speed_limit, next_speed_limit_distance = self.get_next_speed_limit_and_distance()
mapd_sp_send = messaging.new_message('liveMapDataSP')
mapd_sp_send.valid = self.sm.all_checks(['livePose'])
mapd_sp_send.valid = self.sm['liveLocationKalman'].gpsOK
live_map_data = mapd_sp_send.liveMapDataSP
live_map_data.speedLimitValid = bool(speed_limit > 0)

View File

@@ -8,8 +8,8 @@ import json
import math
import platform
from cereal import log
from openpilot.common.params import Params
from openpilot.common.realtime import DT_MDL
from openpilot.sunnypilot.mapd.live_map_data.base_map_data import BaseMapData
from openpilot.sunnypilot.navd.helpers import Coordinate
@@ -20,15 +20,12 @@ class OsmMapData(BaseMapData):
self.mem_params = Params("/dev/shm/params") if platform.system() != "Darwin" else self.params
def update_location(self) -> None:
gps = self.sm[self.gps_location_service]
gps_ok = self.sm.recv_frame[self.gps_location_service] > 0 and (self.sm.frame - self.sm.recv_frame[self.gps_location_service]) * DT_MDL < 2.0
location = self.sm['liveLocationKalman']
self.localizer_valid = (location.status == log.LiveLocationKalman.Status.valid) and location.positionGeodetic.valid
if gps_ok:
self.last_bearing = gps.bearingDeg * 180/math.pi
self.last_position = Coordinate(gps.latitude, gps.longitude)
if not gps_ok and self.sm['livePose'].inputsOK:
return
if self.localizer_valid:
self.last_bearing = math.degrees(location.calibratedOrientationNED.value[2])
self.last_position = Coordinate(location.positionGeodetic.value[0], location.positionGeodetic.value[1])
if self.last_position is None:
return
@@ -36,9 +33,11 @@ class OsmMapData(BaseMapData):
params = {
"latitude": self.last_position.latitude,
"longitude": self.last_position.longitude,
"bearing": self.last_bearing,
}
if self.last_bearing is not None:
params['bearing'] = self.last_bearing
self.mem_params.put("LastGPSPosition", json.dumps(params))
def get_current_speed_limit(self) -> float:

View File

@@ -0,0 +1,3 @@
params_learner
paramsd
locationd

View File

@@ -0,0 +1,37 @@
Import('env', 'arch', 'common', 'messaging', 'rednose', 'transformations')
loc_libs = [messaging, common, 'pthread', 'dl']
# build ekf models
rednose_gen_dir = 'models/generated'
rednose_gen_deps = [
"models/constants.py",
]
live_ekf = env.RednoseCompileFilter(
target='live',
filter_gen_script='models/live_kf.py',
output_dir=rednose_gen_dir,
extra_gen_artifacts=['live_kf_constants.h'],
gen_script_deps=rednose_gen_deps,
)
car_ekf = env.RednoseCompileFilter(
target='car',
filter_gen_script='models/car_kf.py',
output_dir=rednose_gen_dir,
extra_gen_artifacts=[],
gen_script_deps=rednose_gen_deps,
)
# locationd build
locationd_sources = ["locationd.cc", "models/live_kf.cc"]
lenv = env.Clone()
# ekf filter libraries need to be linked, even if no symbols are used
if arch != "Darwin":
lenv["LINKFLAGS"] += ["-Wl,--no-as-needed"]
lenv["LIBPATH"].append(Dir(rednose_gen_dir).abspath)
lenv["RPATH"].append(Dir(rednose_gen_dir).abspath)
locationd = lenv.Program("locationd", locationd_sources, LIBS=["live", "ekf_sym"] + loc_libs + transformations)
lenv.Depends(locationd, rednose)
lenv.Depends(locationd, live_ekf)

View File

@@ -0,0 +1,750 @@
#include "sunnypilot/selfdrive/locationd/locationd.h"
#include <sys/time.h>
#include <sys/resource.h>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace EKFS;
using namespace Eigen;
ExitHandler do_exit;
const double ACCEL_SANITY_CHECK = 100.0; // m/s^2
const double ROTATION_SANITY_CHECK = 10.0; // rad/s
const double TRANS_SANITY_CHECK = 200.0; // m/s
const double CALIB_RPY_SANITY_CHECK = 0.5; // rad (+- 30 deg)
const double ALTITUDE_SANITY_CHECK = 10000; // m
const double MIN_STD_SANITY_CHECK = 1e-5; // m or rad
const double VALID_TIME_SINCE_RESET = 1.0; // s
const double VALID_POS_STD = 50.0; // m
const double MAX_RESET_TRACKER = 5.0;
const double SANE_GPS_UNCERTAINTY = 1500.0; // m
const double INPUT_INVALID_THRESHOLD = 0.5; // same as reset tracker
const double RESET_TRACKER_DECAY = 0.99995;
const double DECAY = 0.9993; // ~10 secs to resume after a bad input
const double MAX_FILTER_REWIND_TIME = 0.8; // s
const double YAWRATE_CROSS_ERR_CHECK_FACTOR = 30;
// TODO: GPS sensor time offsets are empirically calculated
// They should be replaced with synced time from a real clock
const double GPS_QUECTEL_SENSOR_TIME_OFFSET = 0.630; // s
const double GPS_UBLOX_SENSOR_TIME_OFFSET = 0.095; // s
const float GPS_POS_STD_THRESHOLD = 50.0;
const float GPS_VEL_STD_THRESHOLD = 5.0;
const float GPS_POS_ERROR_RESET_THRESHOLD = 300.0;
const float GPS_POS_STD_RESET_THRESHOLD = 2.0;
const float GPS_VEL_STD_RESET_THRESHOLD = 0.5;
const float GPS_ORIENTATION_ERROR_RESET_THRESHOLD = 1.0;
const int GPS_ORIENTATION_ERROR_RESET_CNT = 3;
const bool DEBUG = getenv("DEBUG") != nullptr && std::string(getenv("DEBUG")) != "0";
static VectorXd floatlist2vector(const capnp::List<float, capnp::Kind::PRIMITIVE>::Reader& floatlist) {
VectorXd res(floatlist.size());
for (int i = 0; i < floatlist.size(); i++) {
res[i] = floatlist[i];
}
return res;
}
static Vector4d quat2vector(const Quaterniond& quat) {
return Vector4d(quat.w(), quat.x(), quat.y(), quat.z());
}
static Quaterniond vector2quat(const VectorXd& vec) {
return Quaterniond(vec(0), vec(1), vec(2), vec(3));
}
static void init_measurement(cereal::LiveLocationKalman::Measurement::Builder meas, const VectorXd& val, const VectorXd& std, bool valid) {
meas.setValue(kj::arrayPtr(val.data(), val.size()));
meas.setStd(kj::arrayPtr(std.data(), std.size()));
meas.setValid(valid);
}
static MatrixXdr rotate_cov(const MatrixXdr& rot_matrix, const MatrixXdr& cov_in) {
// To rotate a covariance matrix, the cov matrix needs to multiplied left and right by the transform matrix
return ((rot_matrix * cov_in) * rot_matrix.transpose());
}
static VectorXd rotate_std(const MatrixXdr& rot_matrix, const VectorXd& std_in) {
// Stds cannot be rotated like values, only covariances can be rotated
return rotate_cov(rot_matrix, std_in.array().square().matrix().asDiagonal()).diagonal().array().sqrt();
}
Localizer::Localizer(LocalizerGnssSource gnss_source) {
this->kf = std::make_unique<LiveKalman>();
this->reset_kalman();
this->calib = Vector3d(0.0, 0.0, 0.0);
this->device_from_calib = MatrixXdr::Identity(3, 3);
this->calib_from_device = MatrixXdr::Identity(3, 3);
for (int i = 0; i < POSENET_STD_HIST_HALF * 2; i++) {
this->posenet_stds.push_back(10.0);
}
VectorXd ecef_pos = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
this->converter = std::make_unique<LocalCoord>((ECEF) { .x = ecef_pos[0], .y = ecef_pos[1], .z = ecef_pos[2] });
this->configure_gnss_source(gnss_source);
}
void Localizer::build_live_location(cereal::LiveLocationKalman::Builder& fix) {
VectorXd predicted_state = this->kf->get_x();
MatrixXdr predicted_cov = this->kf->get_P();
VectorXd predicted_std = predicted_cov.diagonal().array().sqrt();
VectorXd fix_ecef = predicted_state.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) };
VectorXd fix_ecef_std = predicted_std.segment<STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START);
VectorXd vel_ecef = predicted_state.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START);
VectorXd vel_ecef_std = predicted_std.segment<STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START);
VectorXd fix_pos_geo_vec = this->get_position_geodetic();
VectorXd orientation_ecef = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
VectorXd orientation_ecef_std = predicted_std.segment<STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START);
MatrixXdr orientation_ecef_cov = predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
MatrixXdr device_from_ecef = euler2rot(orientation_ecef).transpose();
VectorXd calibrated_orientation_ecef = rot2euler((this->calib_from_device * device_from_ecef).transpose());
VectorXd acc_calib = this->calib_from_device * predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START);
MatrixXdr acc_calib_cov = predicted_cov.block<STATE_ACCELERATION_ERR_LEN, STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START, STATE_ACCELERATION_ERR_START);
VectorXd acc_calib_std = rotate_cov(this->calib_from_device, acc_calib_cov).diagonal().array().sqrt();
VectorXd ang_vel_calib = this->calib_from_device * predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START);
MatrixXdr vel_angular_cov = predicted_cov.block<STATE_ANGULAR_VELOCITY_ERR_LEN, STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START);
VectorXd ang_vel_calib_std = rotate_cov(this->calib_from_device, vel_angular_cov).diagonal().array().sqrt();
VectorXd vel_device = device_from_ecef * vel_ecef;
VectorXd device_from_ecef_eul = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START))).transpose();
MatrixXdr condensed_cov(STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN);
condensed_cov.topLeftCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
condensed_cov.topRightCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_VELOCITY_ERR_START);
condensed_cov.bottomRightCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START);
condensed_cov.bottomLeftCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
VectorXd H_input(device_from_ecef_eul.size() + vel_ecef.size());
H_input << device_from_ecef_eul, vel_ecef;
MatrixXdr HH = this->kf->H(H_input);
MatrixXdr vel_device_cov = (HH * condensed_cov) * HH.transpose();
VectorXd vel_device_std = vel_device_cov.diagonal().array().sqrt();
VectorXd vel_calib = this->calib_from_device * vel_device;
VectorXd vel_calib_std = rotate_cov(this->calib_from_device, vel_device_cov).diagonal().array().sqrt();
VectorXd orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, orientation_ecef);
VectorXd orientation_ned_std = rotate_cov(this->converter->ecef2ned_matrix, orientation_ecef_cov).diagonal().array().sqrt();
VectorXd calibrated_orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, calibrated_orientation_ecef);
VectorXd nextfix_ecef = fix_ecef + vel_ecef;
VectorXd ned_vel = this->converter->ecef2ned((ECEF) { .x = nextfix_ecef(0), .y = nextfix_ecef(1), .z = nextfix_ecef(2) }).to_vector() - converter->ecef2ned(fix_ecef_ecef).to_vector();
VectorXd accDevice = predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START);
VectorXd accDeviceErr = predicted_std.segment<STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START);
VectorXd angVelocityDevice = predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START);
VectorXd angVelocityDeviceErr = predicted_std.segment<STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START);
Vector3d nans = Vector3d(NAN, NAN, NAN);
// TODO fill in NED and Calibrated stds
// write measurements to msg
init_measurement(fix.initPositionGeodetic(), fix_pos_geo_vec, nans, this->gps_mode);
init_measurement(fix.initPositionECEF(), fix_ecef, fix_ecef_std, this->gps_mode);
init_measurement(fix.initVelocityECEF(), vel_ecef, vel_ecef_std, this->gps_mode);
init_measurement(fix.initVelocityNED(), ned_vel, nans, this->gps_mode);
init_measurement(fix.initVelocityDevice(), vel_device, vel_device_std, true);
init_measurement(fix.initAccelerationDevice(), accDevice, accDeviceErr, true);
init_measurement(fix.initOrientationECEF(), orientation_ecef, orientation_ecef_std, this->gps_mode);
init_measurement(fix.initCalibratedOrientationECEF(), calibrated_orientation_ecef, nans, this->calibrated && this->gps_mode);
init_measurement(fix.initOrientationNED(), orientation_ned, orientation_ned_std, this->gps_mode);
init_measurement(fix.initCalibratedOrientationNED(), calibrated_orientation_ned, nans, this->calibrated && this->gps_mode);
init_measurement(fix.initAngularVelocityDevice(), angVelocityDevice, angVelocityDeviceErr, true);
init_measurement(fix.initVelocityCalibrated(), vel_calib, vel_calib_std, this->calibrated);
init_measurement(fix.initAngularVelocityCalibrated(), ang_vel_calib, ang_vel_calib_std, this->calibrated);
init_measurement(fix.initAccelerationCalibrated(), acc_calib, acc_calib_std, this->calibrated);
if (DEBUG) {
init_measurement(fix.initFilterState(), predicted_state, predicted_std, true);
}
double old_mean = 0.0, new_mean = 0.0;
int i = 0;
for (double x : this->posenet_stds) {
if (i < POSENET_STD_HIST_HALF) {
old_mean += x;
} else {
new_mean += x;
}
i++;
}
old_mean /= POSENET_STD_HIST_HALF;
new_mean /= POSENET_STD_HIST_HALF;
// experimentally found these values, no false positives in 20k minutes of driving
bool std_spike = (new_mean / old_mean > 4.0 && new_mean > 7.0);
fix.setPosenetOK(!(std_spike && this->car_speed > 5.0));
fix.setDeviceStable(!this->device_fell);
fix.setExcessiveResets(this->reset_tracker > MAX_RESET_TRACKER);
fix.setTimeToFirstFix(std::isnan(this->ttff) ? -1. : this->ttff);
this->device_fell = false;
//fix.setGpsWeek(this->time.week);
//fix.setGpsTimeOfWeek(this->time.tow);
fix.setUnixTimestampMillis(this->unix_timestamp_millis);
double time_since_reset = this->kf->get_filter_time() - this->last_reset_time;
fix.setTimeSinceReset(time_since_reset);
if (fix_ecef_std.norm() < VALID_POS_STD && this->calibrated && time_since_reset > VALID_TIME_SINCE_RESET) {
fix.setStatus(cereal::LiveLocationKalman::Status::VALID);
} else if (fix_ecef_std.norm() < VALID_POS_STD && time_since_reset > VALID_TIME_SINCE_RESET) {
fix.setStatus(cereal::LiveLocationKalman::Status::UNCALIBRATED);
} else {
fix.setStatus(cereal::LiveLocationKalman::Status::UNINITIALIZED);
}
}
VectorXd Localizer::get_position_geodetic() {
VectorXd fix_ecef = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) };
Geodetic fix_pos_geo = ecef2geodetic(fix_ecef_ecef);
return Vector3d(fix_pos_geo.lat, fix_pos_geo.lon, fix_pos_geo.alt);
}
VectorXd Localizer::get_state() {
return this->kf->get_x();
}
VectorXd Localizer::get_stdev() {
return this->kf->get_P().diagonal().array().sqrt();
}
bool Localizer::are_inputs_ok() {
return this->critical_services_valid(this->observation_values_invalid) && !this->observation_timings_invalid;
}
void Localizer::observation_timings_invalid_reset(){
this->observation_timings_invalid = false;
}
void Localizer::handle_sensor(double current_time, const cereal::SensorEventData::Reader& log) {
// TODO does not yet account for double sensor readings in the log
// Ignore empty readings (e.g. in case the magnetometer had no data ready)
if (log.getTimestamp() == 0) {
return;
}
double sensor_time = 1e-9 * log.getTimestamp();
// sensor time and log time should be close
if (std::abs(current_time - sensor_time) > 0.1) {
LOGE("Sensor reading ignored, sensor timestamp more than 100ms off from log time");
this->observation_timings_invalid = true;
return;
} else if (!this->is_timestamp_valid(sensor_time)) {
this->observation_timings_invalid = true;
return;
}
// TODO: handle messages from two IMUs at the same time
if (log.getSource() == cereal::SensorEventData::SensorSource::BMX055) {
return;
}
// Gyro Uncalibrated
if (log.getSensor() == SENSOR_GYRO_UNCALIBRATED && log.getType() == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
auto v = log.getGyroUncalibrated().getV();
auto meas = Vector3d(-v[2], -v[1], -v[0]);
VectorXd gyro_bias = this->kf->get_x().segment<STATE_GYRO_BIAS_LEN>(STATE_GYRO_BIAS_START);
float gyro_camodo_yawrate_err = std::abs((meas[2] - gyro_bias[2]) - this->camodo_yawrate_distribution[0]);
float gyro_camodo_yawrate_err_threshold = YAWRATE_CROSS_ERR_CHECK_FACTOR * this->camodo_yawrate_distribution[1];
bool gyro_valid = gyro_camodo_yawrate_err < gyro_camodo_yawrate_err_threshold;
if ((meas.norm() < ROTATION_SANITY_CHECK) && gyro_valid) {
this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_GYRO, { meas });
this->observation_values_invalid["gyroscope"] *= DECAY;
} else {
this->observation_values_invalid["gyroscope"] += 1.0;
}
}
// Accelerometer
if (log.getSensor() == SENSOR_ACCELEROMETER && log.getType() == SENSOR_TYPE_ACCELEROMETER) {
auto v = log.getAcceleration().getV();
// TODO: reduce false positives and re-enable this check
// check if device fell, estimate 10 for g
// 40m/s**2 is a good filter for falling detection, no false positives in 20k minutes of driving
// this->device_fell |= (floatlist2vector(v) - Vector3d(10.0, 0.0, 0.0)).norm() > 40.0;
auto meas = Vector3d(-v[2], -v[1], -v[0]);
if (meas.norm() < ACCEL_SANITY_CHECK) {
this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_ACCEL, { meas });
this->observation_values_invalid["accelerometer"] *= DECAY;
} else {
this->observation_values_invalid["accelerometer"] += 1.0;
}
}
}
void Localizer::input_fake_gps_observations(double current_time) {
// This is done to make sure that the error estimate of the position does not blow up
// when the filter is in no-gps mode
// Steps : first predict -> observe current obs with reasonable STD
this->kf->predict(current_time);
VectorXd current_x = this->kf->get_x();
VectorXd ecef_pos = current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
VectorXd ecef_vel = current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START);
const MatrixXdr &ecef_pos_R = this->kf->get_fake_gps_pos_cov();
const MatrixXdr &ecef_vel_R = this->kf->get_fake_gps_vel_cov();
this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
}
void Localizer::handle_gps(double current_time, const cereal::GpsLocationData::Reader& log, const double sensor_time_offset) {
bool gps_unreasonable = (Vector2d(log.getHorizontalAccuracy(), log.getVerticalAccuracy()).norm() >= SANE_GPS_UNCERTAINTY);
bool gps_accuracy_insane = ((log.getVerticalAccuracy() <= 0) || (log.getSpeedAccuracy() <= 0) || (log.getBearingAccuracyDeg() <= 0));
bool gps_lat_lng_alt_insane = ((std::abs(log.getLatitude()) > 90) || (std::abs(log.getLongitude()) > 180) || (std::abs(log.getAltitude()) > ALTITUDE_SANITY_CHECK));
bool gps_vel_insane = (floatlist2vector(log.getVNED()).norm() > TRANS_SANITY_CHECK);
if (!log.getHasFix() || gps_unreasonable || gps_accuracy_insane || gps_lat_lng_alt_insane || gps_vel_insane) {
//this->gps_valid = false;
this->determine_gps_mode(current_time);
return;
}
double sensor_time = current_time - sensor_time_offset;
// Process message
//this->gps_valid = true;
this->gps_mode = true;
Geodetic geodetic = { log.getLatitude(), log.getLongitude(), log.getAltitude() };
this->converter = std::make_unique<LocalCoord>(geodetic);
VectorXd ecef_pos = this->converter->ned2ecef({ 0.0, 0.0, 0.0 }).to_vector();
VectorXd ecef_vel = this->converter->ned2ecef({ log.getVNED()[0], log.getVNED()[1], log.getVNED()[2] }).to_vector() - ecef_pos;
float ecef_pos_std = std::sqrt(this->gps_variance_factor * std::pow(log.getHorizontalAccuracy(), 2) + this->gps_vertical_variance_factor * std::pow(log.getVerticalAccuracy(), 2));
MatrixXdr ecef_pos_R = Vector3d::Constant(std::pow(this->gps_std_factor * ecef_pos_std, 2)).asDiagonal();
MatrixXdr ecef_vel_R = Vector3d::Constant(std::pow(this->gps_std_factor * log.getSpeedAccuracy(), 2)).asDiagonal();
this->unix_timestamp_millis = log.getUnixTimestampMillis();
double gps_est_error = (this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) - ecef_pos).norm();
VectorXd orientation_ecef = quat2euler(vector2quat(this->kf->get_x().segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
VectorXd orientation_ned = ned_euler_from_ecef({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ecef);
VectorXd orientation_ned_gps = Vector3d(0.0, 0.0, DEG2RAD(log.getBearingDeg()));
VectorXd orientation_error = (orientation_ned - orientation_ned_gps).array() - M_PI;
for (int i = 0; i < orientation_error.size(); i++) {
orientation_error(i) = std::fmod(orientation_error(i), 2.0 * M_PI);
if (orientation_error(i) < 0.0) {
orientation_error(i) += 2.0 * M_PI;
}
orientation_error(i) -= M_PI;
}
VectorXd initial_pose_ecef_quat = quat2vector(euler2quat(ecef_euler_from_ned({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ned_gps)));
if (ecef_vel.norm() > 5.0 && orientation_error.norm() > 1.0) {
LOGE("Locationd vs ubloxLocation orientation difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_ORIENTATION_FROM_GPS, { initial_pose_ecef_quat });
} else if (gps_est_error > 100.0) {
LOGE("Locationd vs ubloxLocation position difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
}
this->last_gps_msg = sensor_time;
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
}
void Localizer::handle_gnss(double current_time, const cereal::GnssMeasurements::Reader& log) {
if (!log.getPositionECEF().getValid() || !log.getVelocityECEF().getValid()) {
this->determine_gps_mode(current_time);
return;
}
double sensor_time = log.getMeasTime() * 1e-9;
sensor_time -= this->gps_time_offset;
auto ecef_pos_v = log.getPositionECEF().getValue();
VectorXd ecef_pos = Vector3d(ecef_pos_v[0], ecef_pos_v[1], ecef_pos_v[2]);
// indexed at 0 cause all std values are the same MAE
auto ecef_pos_std = log.getPositionECEF().getStd()[0];
MatrixXdr ecef_pos_R = Vector3d::Constant(pow(this->gps_std_factor*ecef_pos_std, 2)).asDiagonal();
auto ecef_vel_v = log.getVelocityECEF().getValue();
VectorXd ecef_vel = Vector3d(ecef_vel_v[0], ecef_vel_v[1], ecef_vel_v[2]);
// indexed at 0 cause all std values are the same MAE
auto ecef_vel_std = log.getVelocityECEF().getStd()[0];
MatrixXdr ecef_vel_R = Vector3d::Constant(pow(this->gps_std_factor*ecef_vel_std, 2)).asDiagonal();
double gps_est_error = (this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) - ecef_pos).norm();
VectorXd orientation_ecef = quat2euler(vector2quat(this->kf->get_x().segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
VectorXd orientation_ned = ned_euler_from_ecef({ ecef_pos[0], ecef_pos[1], ecef_pos[2] }, orientation_ecef);
LocalCoord convs((ECEF){ .x = ecef_pos[0], .y = ecef_pos[1], .z = ecef_pos[2] });
ECEF next_ecef = {.x = ecef_pos[0] + ecef_vel[0], .y = ecef_pos[1] + ecef_vel[1], .z = ecef_pos[2] + ecef_vel[2]};
VectorXd ned_vel = convs.ecef2ned(next_ecef).to_vector();
double bearing_rad = atan2(ned_vel[1], ned_vel[0]);
VectorXd orientation_ned_gps = Vector3d(0.0, 0.0, bearing_rad);
VectorXd orientation_error = (orientation_ned - orientation_ned_gps).array() - M_PI;
for (int i = 0; i < orientation_error.size(); i++) {
orientation_error(i) = std::fmod(orientation_error(i), 2.0 * M_PI);
if (orientation_error(i) < 0.0) {
orientation_error(i) += 2.0 * M_PI;
}
orientation_error(i) -= M_PI;
}
VectorXd initial_pose_ecef_quat = quat2vector(euler2quat(ecef_euler_from_ned({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ned_gps)));
if (ecef_pos_std > GPS_POS_STD_THRESHOLD || ecef_vel_std > GPS_VEL_STD_THRESHOLD) {
this->determine_gps_mode(current_time);
return;
}
// prevent jumping gnss measurements (covered lots, standstill...)
bool orientation_reset = ecef_vel_std < GPS_VEL_STD_RESET_THRESHOLD;
orientation_reset &= orientation_error.norm() > GPS_ORIENTATION_ERROR_RESET_THRESHOLD;
orientation_reset &= !this->standstill;
if (orientation_reset) {
this->orientation_reset_count++;
} else {
this->orientation_reset_count = 0;
}
if ((gps_est_error > GPS_POS_ERROR_RESET_THRESHOLD && ecef_pos_std < GPS_POS_STD_RESET_THRESHOLD) || this->last_gps_msg == 0) {
// always reset on first gps message and if the location is off but the accuracy is high
LOGE("Locationd vs gnssMeasurement position difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
} else if (orientation_reset_count > GPS_ORIENTATION_ERROR_RESET_CNT) {
LOGE("Locationd vs gnssMeasurement orientation difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_ORIENTATION_FROM_GPS, { initial_pose_ecef_quat });
this->orientation_reset_count = 0;
}
this->gps_mode = true;
this->last_gps_msg = sensor_time;
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
}
void Localizer::handle_car_state(double current_time, const cereal::CarState::Reader& log) {
this->car_speed = std::abs(log.getVEgo());
this->standstill = log.getStandstill();
if (this->standstill) {
this->kf->predict_and_observe(current_time, OBSERVATION_NO_ROT, { Vector3d(0.0, 0.0, 0.0) });
this->kf->predict_and_observe(current_time, OBSERVATION_NO_ACCEL, { Vector3d(0.0, 0.0, 0.0) });
}
}
void Localizer::handle_cam_odo(double current_time, const cereal::CameraOdometry::Reader& log) {
VectorXd rot_device = this->device_from_calib * floatlist2vector(log.getRot());
VectorXd trans_device = this->device_from_calib * floatlist2vector(log.getTrans());
if (!this->is_timestamp_valid(current_time)) {
this->observation_timings_invalid = true;
return;
}
if ((rot_device.norm() > ROTATION_SANITY_CHECK) || (trans_device.norm() > TRANS_SANITY_CHECK)) {
this->observation_values_invalid["cameraOdometry"] += 1.0;
return;
}
VectorXd rot_calib_std = floatlist2vector(log.getRotStd());
VectorXd trans_calib_std = floatlist2vector(log.getTransStd());
if ((rot_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK) || (trans_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK)) {
this->observation_values_invalid["cameraOdometry"] += 1.0;
return;
}
if ((rot_calib_std.norm() > 10 * ROTATION_SANITY_CHECK) || (trans_calib_std.norm() > 10 * TRANS_SANITY_CHECK)) {
this->observation_values_invalid["cameraOdometry"] += 1.0;
return;
}
this->posenet_stds.pop_front();
this->posenet_stds.push_back(trans_calib_std[0]);
// Multiply by 10 to avoid to high certainty in kalman filter because of temporally correlated noise
trans_calib_std *= 10.0;
rot_calib_std *= 10.0;
MatrixXdr rot_device_cov = rotate_std(this->device_from_calib, rot_calib_std).array().square().matrix().asDiagonal();
MatrixXdr trans_device_cov = rotate_std(this->device_from_calib, trans_calib_std).array().square().matrix().asDiagonal();
this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_ROTATION,
{ rot_device }, { rot_device_cov });
this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_TRANSLATION,
{ trans_device }, { trans_device_cov });
this->observation_values_invalid["cameraOdometry"] *= DECAY;
this->camodo_yawrate_distribution = Vector2d(rot_device[2], rotate_std(this->device_from_calib, rot_calib_std)[2]);
}
void Localizer::handle_live_calib(double current_time, const cereal::LiveCalibrationData::Reader& log) {
if (!this->is_timestamp_valid(current_time)) {
this->observation_timings_invalid = true;
return;
}
if (log.getRpyCalib().size() > 0) {
auto live_calib = floatlist2vector(log.getRpyCalib());
if ((live_calib.minCoeff() < -CALIB_RPY_SANITY_CHECK) || (live_calib.maxCoeff() > CALIB_RPY_SANITY_CHECK)) {
this->observation_values_invalid["liveCalibration"] += 1.0;
return;
}
this->calib = live_calib;
this->device_from_calib = euler2rot(this->calib);
this->calib_from_device = this->device_from_calib.transpose();
this->calibrated = log.getCalStatus() == cereal::LiveCalibrationData::Status::CALIBRATED;
this->observation_values_invalid["liveCalibration"] *= DECAY;
}
}
void Localizer::reset_kalman(double current_time) {
const VectorXd &init_x = this->kf->get_initial_x();
const MatrixXdr &init_P = this->kf->get_initial_P();
this->reset_kalman(current_time, init_x, init_P);
}
void Localizer::finite_check(double current_time) {
bool all_finite = this->kf->get_x().array().isFinite().all() or this->kf->get_P().array().isFinite().all();
if (!all_finite) {
LOGE("Non-finite values detected, kalman reset");
this->reset_kalman(current_time);
}
}
void Localizer::time_check(double current_time) {
if (std::isnan(this->last_reset_time)) {
this->last_reset_time = current_time;
}
if (std::isnan(this->first_valid_log_time)) {
this->first_valid_log_time = current_time;
}
double filter_time = this->kf->get_filter_time();
bool big_time_gap = !std::isnan(filter_time) && (current_time - filter_time > 10);
if (big_time_gap) {
LOGE("Time gap of over 10s detected, kalman reset");
this->reset_kalman(current_time);
}
}
void Localizer::update_reset_tracker() {
// reset tracker is tuned to trigger when over 1reset/10s over 2min period
if (this->is_gps_ok()) {
this->reset_tracker *= RESET_TRACKER_DECAY;
} else {
this->reset_tracker = 0.0;
}
}
void Localizer::reset_kalman(double current_time, const VectorXd &init_orient, const VectorXd &init_pos, const VectorXd &init_vel, const MatrixXdr &init_pos_R, const MatrixXdr &init_vel_R) {
// too nonlinear to init on completely wrong
VectorXd current_x = this->kf->get_x();
MatrixXdr current_P = this->kf->get_P();
MatrixXdr init_P = this->kf->get_initial_P();
const MatrixXdr &reset_orientation_P = this->kf->get_reset_orientation_P();
int non_ecef_state_err_len = init_P.rows() - (STATE_ECEF_POS_ERR_LEN + STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN);
current_x.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START) = init_orient;
current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START) = init_vel;
current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) = init_pos;
init_P.block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal() = init_pos_R.diagonal();
init_P.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START).diagonal() = reset_orientation_P.diagonal();
init_P.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START).diagonal() = init_vel_R.diagonal();
init_P.block(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal() = current_P.block(STATE_ANGULAR_VELOCITY_ERR_START,
STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal();
this->reset_kalman(current_time, current_x, init_P);
}
void Localizer::reset_kalman(double current_time, const VectorXd &init_x, const MatrixXdr &init_P) {
this->kf->init_state(init_x, init_P, current_time);
this->last_reset_time = current_time;
this->reset_tracker += 1.0;
}
void Localizer::handle_msg_bytes(const char *data, const size_t size) {
AlignedBuffer aligned_buf;
capnp::FlatArrayMessageReader cmsg(aligned_buf.align(data, size));
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
this->handle_msg(event);
}
void Localizer::handle_msg(const cereal::Event::Reader& log) {
double t = log.getLogMonoTime() * 1e-9;
this->time_check(t);
if (log.isAccelerometer()) {
this->handle_sensor(t, log.getAccelerometer());
} else if (log.isGyroscope()) {
this->handle_sensor(t, log.getGyroscope());
} else if (log.isGpsLocation()) {
this->handle_gps(t, log.getGpsLocation(), GPS_QUECTEL_SENSOR_TIME_OFFSET);
} else if (log.isGpsLocationExternal()) {
this->handle_gps(t, log.getGpsLocationExternal(), GPS_UBLOX_SENSOR_TIME_OFFSET);
//} else if (log.isGnssMeasurements()) {
// this->handle_gnss(t, log.getGnssMeasurements());
} else if (log.isCarState()) {
this->handle_car_state(t, log.getCarState());
} else if (log.isCameraOdometry()) {
this->handle_cam_odo(t, log.getCameraOdometry());
} else if (log.isLiveCalibration()) {
this->handle_live_calib(t, log.getLiveCalibration());
}
this->finite_check();
this->update_reset_tracker();
}
kj::ArrayPtr<capnp::byte> Localizer::get_message_bytes(MessageBuilder& msg_builder, bool inputsOK,
bool sensorsOK, bool gpsOK, bool msgValid) {
cereal::Event::Builder evt = msg_builder.initEvent();
evt.setValid(msgValid);
cereal::LiveLocationKalman::Builder liveLoc = evt.initLiveLocationKalman();
this->build_live_location(liveLoc);
liveLoc.setSensorsOK(sensorsOK);
liveLoc.setGpsOK(gpsOK);
liveLoc.setInputsOK(inputsOK);
return msg_builder.toBytes();
}
bool Localizer::is_gps_ok() {
return (this->kf->get_filter_time() - this->last_gps_msg) < 2.0;
}
bool Localizer::critical_services_valid(const std::map<std::string, double> &critical_services) {
for (auto &kv : critical_services){
if (kv.second >= INPUT_INVALID_THRESHOLD){
return false;
}
}
return true;
}
bool Localizer::is_timestamp_valid(double current_time) {
double filter_time = this->kf->get_filter_time();
if (!std::isnan(filter_time) && ((filter_time - current_time) > MAX_FILTER_REWIND_TIME)) {
LOGE("Observation timestamp is older than the max rewind threshold of the filter");
return false;
}
return true;
}
void Localizer::determine_gps_mode(double current_time) {
// 1. If the pos_std is greater than what's not acceptable and localizer is in gps-mode, reset to no-gps-mode
// 2. If the pos_std is greater than what's not acceptable and localizer is in no-gps-mode, fake obs
// 3. If the pos_std is smaller than what's not acceptable, let gps-mode be whatever it is
VectorXd current_pos_std = this->kf->get_P().block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal().array().sqrt();
if (current_pos_std.norm() > SANE_GPS_UNCERTAINTY){
if (this->gps_mode){
this->gps_mode = false;
this->reset_kalman(current_time);
} else {
this->input_fake_gps_observations(current_time);
}
}
}
void Localizer::configure_gnss_source(const LocalizerGnssSource &source) {
this->gnss_source = source;
if (source == LocalizerGnssSource::UBLOX) {
this->gps_std_factor = 10.0;
this->gps_variance_factor = 1.0;
this->gps_vertical_variance_factor = 1.0;
this->gps_time_offset = GPS_UBLOX_SENSOR_TIME_OFFSET;
} else {
this->gps_std_factor = 2.0;
this->gps_variance_factor = 0.0;
this->gps_vertical_variance_factor = 3.0;
this->gps_time_offset = GPS_QUECTEL_SENSOR_TIME_OFFSET;
}
}
int Localizer::locationd_thread() {
Params params;
LocalizerGnssSource source;
const char* gps_location_socket;
if (params.getBool("UbloxAvailable")) {
source = LocalizerGnssSource::UBLOX;
gps_location_socket = "gpsLocationExternal";
} else {
source = LocalizerGnssSource::QCOM;
gps_location_socket = "gpsLocation";
}
this->configure_gnss_source(source);
const std::initializer_list<const char *> service_list = {gps_location_socket, "cameraOdometry", "liveCalibration",
"carState", "accelerometer", "gyroscope"};
SubMaster sm(service_list, {}, nullptr, {gps_location_socket});
PubMaster pm({"liveLocationKalman"});
uint64_t cnt = 0;
bool filterInitialized = false;
const std::vector<std::string> critical_input_services = {"cameraOdometry", "liveCalibration", "accelerometer", "gyroscope"};
for (std::string service : critical_input_services) {
this->observation_values_invalid.insert({service, 0.0});
}
while (!do_exit) {
sm.update();
if (filterInitialized){
this->observation_timings_invalid_reset();
for (const char* service : service_list) {
if (sm.updated(service) && sm.valid(service)){
const cereal::Event::Reader log = sm[service];
this->handle_msg(log);
}
}
} else {
filterInitialized = sm.allAliveAndValid();
}
const char* trigger_msg = "cameraOdometry";
if (sm.updated(trigger_msg)) {
bool inputsOK = sm.allValid() && this->are_inputs_ok();
bool gpsOK = this->is_gps_ok();
bool sensorsOK = sm.allAliveAndValid({"accelerometer", "gyroscope"});
// Log time to first fix
if (gpsOK && std::isnan(this->ttff) && !std::isnan(this->first_valid_log_time)) {
this->ttff = std::max(1e-3, (sm[trigger_msg].getLogMonoTime() * 1e-9) - this->first_valid_log_time);
}
MessageBuilder msg_builder;
kj::ArrayPtr<capnp::byte> bytes = this->get_message_bytes(msg_builder, inputsOK, sensorsOK, gpsOK, filterInitialized);
pm.send("liveLocationKalman", bytes.begin(), bytes.size());
if (cnt % 1200 == 0 && gpsOK) { // once a minute
VectorXd posGeo = this->get_position_geodetic();
std::string lastGPSPosJSON = util::string_format(
"{\"latitude\": %.15f, \"longitude\": %.15f, \"altitude\": %.15f}", posGeo(0), posGeo(1), posGeo(2));
params.putNonBlocking("LastGPSPositionLLK", lastGPSPosJSON);
}
cnt++;
}
}
return 0;
}
int main() {
util::set_realtime_priority(5);
Localizer localizer;
return localizer.locationd_thread();
}

View File

@@ -0,0 +1,100 @@
#pragma once
#include <eigen3/Eigen/Dense>
#include <deque>
#include <fstream>
#include <memory>
#include <map>
#include <string>
#include "cereal/messaging/messaging.h"
#include "common/transformations/coordinates.hpp"
#include "common/transformations/orientation.hpp"
#include "common/params.h"
#include "common/swaglog.h"
#include "common/timing.h"
#include "common/util.h"
#include "sunnypilot/system/sensord/sensors/constants.h"
#define VISION_DECIMATION 2
#define SENSOR_DECIMATION 10
#include "sunnypilot/selfdrive/locationd/models/live_kf.h"
#define POSENET_STD_HIST_HALF 20
enum LocalizerGnssSource {
UBLOX, QCOM
};
class Localizer {
public:
Localizer(LocalizerGnssSource gnss_source = LocalizerGnssSource::UBLOX);
int locationd_thread();
void reset_kalman(double current_time = NAN);
void reset_kalman(double current_time, const Eigen::VectorXd &init_orient, const Eigen::VectorXd &init_pos, const Eigen::VectorXd &init_vel, const MatrixXdr &init_pos_R, const MatrixXdr &init_vel_R);
void reset_kalman(double current_time, const Eigen::VectorXd &init_x, const MatrixXdr &init_P);
void finite_check(double current_time = NAN);
void time_check(double current_time = NAN);
void update_reset_tracker();
bool is_gps_ok();
bool critical_services_valid(const std::map<std::string, double> &critical_services);
bool is_timestamp_valid(double current_time);
void determine_gps_mode(double current_time);
bool are_inputs_ok();
void observation_timings_invalid_reset();
kj::ArrayPtr<capnp::byte> get_message_bytes(MessageBuilder& msg_builder,
bool inputsOK, bool sensorsOK, bool gpsOK, bool msgValid);
void build_live_location(cereal::LiveLocationKalman::Builder& fix);
Eigen::VectorXd get_position_geodetic();
Eigen::VectorXd get_state();
Eigen::VectorXd get_stdev();
void handle_msg_bytes(const char *data, const size_t size);
void handle_msg(const cereal::Event::Reader& log);
void handle_sensor(double current_time, const cereal::SensorEventData::Reader& log);
void handle_gps(double current_time, const cereal::GpsLocationData::Reader& log, const double sensor_time_offset);
void handle_gnss(double current_time, const cereal::GnssMeasurements::Reader& log);
void handle_car_state(double current_time, const cereal::CarState::Reader& log);
void handle_cam_odo(double current_time, const cereal::CameraOdometry::Reader& log);
void handle_live_calib(double current_time, const cereal::LiveCalibrationData::Reader& log);
void input_fake_gps_observations(double current_time);
private:
std::unique_ptr<LiveKalman> kf;
Eigen::VectorXd calib;
MatrixXdr device_from_calib;
MatrixXdr calib_from_device;
bool calibrated = false;
double car_speed = 0.0;
double last_reset_time = NAN;
std::deque<double> posenet_stds;
std::unique_ptr<LocalCoord> converter;
int64_t unix_timestamp_millis = 0;
double reset_tracker = 0.0;
bool device_fell = false;
bool gps_mode = false;
double first_valid_log_time = NAN;
double ttff = NAN;
double last_gps_msg = 0;
LocalizerGnssSource gnss_source;
bool observation_timings_invalid = false;
std::map<std::string, double> observation_values_invalid;
bool standstill = true;
int32_t orientation_reset_count = 0;
float gps_std_factor;
float gps_variance_factor;
float gps_vertical_variance_factor;
double gps_time_offset;
Eigen::VectorXd camodo_yawrate_distribution = Eigen::Vector2d(0.0, 10.0); // mean, std
void configure_gnss_source(const LocalizerGnssSource &source);
};

View File

@@ -0,0 +1 @@
generated/

View File

@@ -0,0 +1,180 @@
#!/usr/bin/env python3
import math
import sys
from typing import Any
import numpy as np
from openpilot.common.constants import ACCELERATION_DUE_TO_GRAVITY
from openpilot.sunnypilot.selfdrive.locationd.models.constants import ObservationKind
from openpilot.common.swaglog import cloudlog
from rednose.helpers.kalmanfilter import KalmanFilter
if __name__ == '__main__': # Generating sympy
import sympy as sp
from rednose.helpers.ekf_sym import gen_code
else:
from rednose.helpers.ekf_sym_pyx import EKF_sym_pyx
i = 0
def _slice(n):
global i
s = slice(i, i + n)
i += n
return s
class States:
# Vehicle model params
STIFFNESS = _slice(1) # [-]
STEER_RATIO = _slice(1) # [-]
ANGLE_OFFSET = _slice(1) # [rad]
ANGLE_OFFSET_FAST = _slice(1) # [rad]
VELOCITY = _slice(2) # (x, y) [m/s]
YAW_RATE = _slice(1) # [rad/s]
STEER_ANGLE = _slice(1) # [rad]
ROAD_ROLL = _slice(1) # [rad]
class CarKalman(KalmanFilter):
name = 'car'
initial_x = np.array([
1.0,
15.0,
0.0,
0.0,
10.0, 0.0,
0.0,
0.0,
0.0
])
# process noise
Q = np.diag([
(.05 / 100)**2,
.01**2,
math.radians(0.02)**2,
math.radians(0.25)**2,
.1**2, .01**2,
math.radians(0.1)**2,
math.radians(0.1)**2,
math.radians(1)**2,
])
P_initial = Q.copy()
obs_noise: dict[int, Any] = {
ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.05)**2),
ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(10.0)**2),
ObservationKind.ROAD_ROLL: np.atleast_2d(math.radians(1.0)**2),
ObservationKind.STEER_RATIO: np.atleast_2d(5.0**2),
ObservationKind.STIFFNESS: np.atleast_2d(0.5**2),
ObservationKind.ROAD_FRAME_X_SPEED: np.atleast_2d(0.1**2),
}
global_vars = [
'mass',
'rotational_inertia',
'center_to_front',
'center_to_rear',
'stiffness_front',
'stiffness_rear',
]
@staticmethod
def generate_code(generated_dir):
dim_state = CarKalman.initial_x.shape[0]
name = CarKalman.name
# Linearized single-track lateral dynamics, equations 7.211-7.213
# Massimo Guiggiani, The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars
# Springer Cham, 2023. doi: https://doi.org/10.1007/978-3-031-06461-6
# globals
global_vars = [sp.Symbol(name) for name in CarKalman.global_vars]
m, j, aF, aR, cF_orig, cR_orig = global_vars
# make functions and jacobians with sympy
# state variables
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
# Vehicle model constants
sf = state[States.STIFFNESS, :][0, 0]
cF, cR = sf * cF_orig, sf * cR_orig
angle_offset = state[States.ANGLE_OFFSET, :][0, 0]
angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0]
theta = state[States.ROAD_ROLL, :][0, 0]
sa = state[States.STEER_ANGLE, :][0, 0]
sR = state[States.STEER_RATIO, :][0, 0]
u, v = state[States.VELOCITY, :]
r = state[States.YAW_RATE, :][0, 0]
A = sp.Matrix(np.zeros((2, 2)))
A[0, 0] = -(cF + cR) / (m * u)
A[0, 1] = -(cF * aF - cR * aR) / (m * u) - u
A[1, 0] = -(cF * aF - cR * aR) / (j * u)
A[1, 1] = -(cF * aF**2 + cR * aR**2) / (j * u)
B = sp.Matrix(np.zeros((2, 1)))
B[0, 0] = cF / m / sR
B[1, 0] = (cF * aF) / j / sR
C = sp.Matrix(np.zeros((2, 1)))
C[0, 0] = ACCELERATION_DUE_TO_GRAVITY
C[1, 0] = 0
x = sp.Matrix([v, r]) # lateral velocity, yaw rate
x_dot = A * x + B * (sa - angle_offset - angle_offset_fast) - C * theta
dt = sp.Symbol('dt')
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[States.VELOCITY.start + 1, 0] = x_dot[0]
state_dot[States.YAW_RATE.start, 0] = x_dot[1]
# Basic descretization, 1st order integrator
# Can be pretty bad if dt is big
f_sym = state + dt * state_dot
#
# Observation functions
#
obs_eqs = [
[sp.Matrix([r]), ObservationKind.ROAD_FRAME_YAW_RATE, None],
[sp.Matrix([u, v]), ObservationKind.ROAD_FRAME_XY_SPEED, None],
[sp.Matrix([u]), ObservationKind.ROAD_FRAME_X_SPEED, None],
[sp.Matrix([sa]), ObservationKind.STEER_ANGLE, None],
[sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None],
[sp.Matrix([sR]), ObservationKind.STEER_RATIO, None],
[sp.Matrix([sf]), ObservationKind.STIFFNESS, None],
[sp.Matrix([theta]), ObservationKind.ROAD_ROLL, None],
]
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, global_vars=global_vars)
def __init__(self, generated_dir):
dim_state, dim_state_err = CarKalman.initial_x.shape[0], CarKalman.P_initial.shape[0]
self.filter = EKF_sym_pyx(generated_dir, CarKalman.name, CarKalman.Q, CarKalman.initial_x, CarKalman.P_initial,
dim_state, dim_state_err, global_vars=CarKalman.global_vars, logger=cloudlog)
def set_globals(self, mass, rotational_inertia, center_to_front, center_to_rear, stiffness_front, stiffness_rear):
self.filter.set_global("mass", mass)
self.filter.set_global("rotational_inertia", rotational_inertia)
self.filter.set_global("center_to_front", center_to_front)
self.filter.set_global("center_to_rear", center_to_rear)
self.filter.set_global("stiffness_front", stiffness_front)
self.filter.set_global("stiffness_rear", stiffness_rear)
if __name__ == "__main__":
generated_dir = sys.argv[2]
CarKalman.generate_code(generated_dir)

View File

@@ -0,0 +1,92 @@
import os
GENERATED_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), 'generated'))
class ObservationKind:
UNKNOWN = 0
NO_OBSERVATION = 1
GPS_NED = 2
ODOMETRIC_SPEED = 3
PHONE_GYRO = 4
GPS_VEL = 5
PSEUDORANGE_GPS = 6
PSEUDORANGE_RATE_GPS = 7
SPEED = 8
NO_ROT = 9
PHONE_ACCEL = 10
ORB_POINT = 11
ECEF_POS = 12
CAMERA_ODO_TRANSLATION = 13
CAMERA_ODO_ROTATION = 14
ORB_FEATURES = 15
MSCKF_TEST = 16
FEATURE_TRACK_TEST = 17
LANE_PT = 18
IMU_FRAME = 19
PSEUDORANGE_GLONASS = 20
PSEUDORANGE_RATE_GLONASS = 21
PSEUDORANGE = 22
PSEUDORANGE_RATE = 23
ECEF_VEL = 35
ECEF_ORIENTATION_FROM_GPS = 32
NO_ACCEL = 33
ORB_FEATURES_WIDE = 34
ROAD_FRAME_XY_SPEED = 24 # (x, y) [m/s]
ROAD_FRAME_YAW_RATE = 25 # [rad/s]
STEER_ANGLE = 26 # [rad]
ANGLE_OFFSET_FAST = 27 # [rad]
STIFFNESS = 28 # [-]
STEER_RATIO = 29 # [-]
ROAD_FRAME_X_SPEED = 30 # (x) [m/s]
ROAD_ROLL = 31 # [rad]
names = [
'Unknown',
'No observation',
'GPS NED',
'Odometric speed',
'Phone gyro',
'GPS velocity',
'GPS pseudorange',
'GPS pseudorange rate',
'Speed',
'No rotation',
'Phone acceleration',
'ORB point',
'ECEF pos',
'camera odometric translation',
'camera odometric rotation',
'ORB features',
'MSCKF test',
'Feature track test',
'Lane ecef point',
'imu frame eulers',
'GLONASS pseudorange',
'GLONASS pseudorange rate',
'pseudorange',
'pseudorange rate',
'Road Frame x,y speed',
'Road Frame yaw rate',
'Steer Angle',
'Fast Angle Offset',
'Stiffness',
'Steer Ratio',
'Road Frame x speed',
'Road Roll',
'ECEF orientation from GPS',
'NO accel',
'ORB features wide camera',
'ECEF_VEL',
]
@classmethod
def to_string(cls, kind):
return cls.names[kind]
SAT_OBS = [ObservationKind.PSEUDORANGE_GPS,
ObservationKind.PSEUDORANGE_RATE_GPS,
ObservationKind.PSEUDORANGE_GLONASS,
ObservationKind.PSEUDORANGE_RATE_GLONASS]

View File

@@ -0,0 +1,122 @@
#include "sunnypilot/selfdrive/locationd/models/live_kf.h"
using namespace EKFS;
using namespace Eigen;
Eigen::Map<Eigen::VectorXd> get_mapvec(const Eigen::VectorXd &vec) {
return Eigen::Map<Eigen::VectorXd>((double*)vec.data(), vec.rows(), vec.cols());
}
Eigen::Map<MatrixXdr> get_mapmat(const MatrixXdr &mat) {
return Eigen::Map<MatrixXdr>((double*)mat.data(), mat.rows(), mat.cols());
}
std::vector<Eigen::Map<Eigen::VectorXd>> get_vec_mapvec(const std::vector<Eigen::VectorXd> &vec_vec) {
std::vector<Eigen::Map<Eigen::VectorXd>> res;
for (const Eigen::VectorXd &vec : vec_vec) {
res.push_back(get_mapvec(vec));
}
return res;
}
std::vector<Eigen::Map<MatrixXdr>> get_vec_mapmat(const std::vector<MatrixXdr> &mat_vec) {
std::vector<Eigen::Map<MatrixXdr>> res;
for (const MatrixXdr &mat : mat_vec) {
res.push_back(get_mapmat(mat));
}
return res;
}
LiveKalman::LiveKalman() {
this->dim_state = live_initial_x.rows();
this->dim_state_err = live_initial_P_diag.rows();
this->initial_x = live_initial_x;
this->initial_P = live_initial_P_diag.asDiagonal();
this->fake_gps_pos_cov = live_fake_gps_pos_cov_diag.asDiagonal();
this->fake_gps_vel_cov = live_fake_gps_vel_cov_diag.asDiagonal();
this->reset_orientation_P = live_reset_orientation_diag.asDiagonal();
this->Q = live_Q_diag.asDiagonal();
for (auto& pair : live_obs_noise_diag) {
this->obs_noise[pair.first] = pair.second.asDiagonal();
}
// init filter
this->filter = std::make_shared<EKFSym>(this->name, get_mapmat(this->Q), get_mapvec(this->initial_x),
get_mapmat(initial_P), this->dim_state, this->dim_state_err, 0, 0, 0, std::vector<int>(),
std::vector<int>{3}, std::vector<std::string>(), 0.8);
}
void LiveKalman::init_state(const VectorXd &state, const VectorXd &covs_diag, double filter_time) {
MatrixXdr covs = covs_diag.asDiagonal();
this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time);
}
void LiveKalman::init_state(const VectorXd &state, const MatrixXdr &covs, double filter_time) {
this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time);
}
void LiveKalman::init_state(const VectorXd &state, double filter_time) {
MatrixXdr covs = this->filter->covs();
this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time);
}
VectorXd LiveKalman::get_x() {
return this->filter->state();
}
MatrixXdr LiveKalman::get_P() {
return this->filter->covs();
}
double LiveKalman::get_filter_time() {
return this->filter->get_filter_time();
}
std::vector<MatrixXdr> LiveKalman::get_R(int kind, int n) {
std::vector<MatrixXdr> R;
for (int i = 0; i < n; i++) {
R.push_back(this->obs_noise[kind]);
}
return R;
}
std::optional<Estimate> LiveKalman::predict_and_observe(double t, int kind, const std::vector<VectorXd> &meas, std::vector<MatrixXdr> R) {
std::optional<Estimate> r;
if (R.size() == 0) {
R = this->get_R(kind, meas.size());
}
r = this->filter->predict_and_update_batch(t, kind, get_vec_mapvec(meas), get_vec_mapmat(R));
return r;
}
void LiveKalman::predict(double t) {
this->filter->predict(t);
}
const Eigen::VectorXd &LiveKalman::get_initial_x() {
return this->initial_x;
}
const MatrixXdr &LiveKalman::get_initial_P() {
return this->initial_P;
}
const MatrixXdr &LiveKalman::get_fake_gps_pos_cov() {
return this->fake_gps_pos_cov;
}
const MatrixXdr &LiveKalman::get_fake_gps_vel_cov() {
return this->fake_gps_vel_cov;
}
const MatrixXdr &LiveKalman::get_reset_orientation_P() {
return this->reset_orientation_P;
}
MatrixXdr LiveKalman::H(const VectorXd &in) {
assert(in.size() == 6);
Matrix<double, 3, 6, Eigen::RowMajor> res;
this->filter->get_extra_routine("H")((double*)in.data(), res.data());
return res;
}

View File

@@ -0,0 +1,66 @@
#pragma once
#include <string>
#include <cmath>
#include <memory>
#include <unordered_map>
#include <vector>
#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Dense>
#include "generated/live_kf_constants.h"
#include "rednose/helpers/ekf_sym.h"
#define EARTH_GM 3.986005e14 // m^3/s^2 (gravitational constant * mass of earth)
using namespace EKFS;
Eigen::Map<Eigen::VectorXd> get_mapvec(const Eigen::VectorXd &vec);
Eigen::Map<MatrixXdr> get_mapmat(const MatrixXdr &mat);
std::vector<Eigen::Map<Eigen::VectorXd>> get_vec_mapvec(const std::vector<Eigen::VectorXd> &vec_vec);
std::vector<Eigen::Map<MatrixXdr>> get_vec_mapmat(const std::vector<MatrixXdr> &mat_vec);
class LiveKalman {
public:
LiveKalman();
void init_state(const Eigen::VectorXd &state, const Eigen::VectorXd &covs_diag, double filter_time);
void init_state(const Eigen::VectorXd &state, const MatrixXdr &covs, double filter_time);
void init_state(const Eigen::VectorXd &state, double filter_time);
Eigen::VectorXd get_x();
MatrixXdr get_P();
double get_filter_time();
std::vector<MatrixXdr> get_R(int kind, int n);
std::optional<Estimate> predict_and_observe(double t, int kind, const std::vector<Eigen::VectorXd> &meas, std::vector<MatrixXdr> R = {});
std::optional<Estimate> predict_and_update_odo_speed(std::vector<Eigen::VectorXd> speed, double t, int kind);
std::optional<Estimate> predict_and_update_odo_trans(std::vector<Eigen::VectorXd> trans, double t, int kind);
std::optional<Estimate> predict_and_update_odo_rot(std::vector<Eigen::VectorXd> rot, double t, int kind);
void predict(double t);
const Eigen::VectorXd &get_initial_x();
const MatrixXdr &get_initial_P();
const MatrixXdr &get_fake_gps_pos_cov();
const MatrixXdr &get_fake_gps_vel_cov();
const MatrixXdr &get_reset_orientation_P();
MatrixXdr H(const Eigen::VectorXd &in);
private:
std::string name = "live";
std::shared_ptr<EKFSym> filter;
int dim_state;
int dim_state_err;
Eigen::VectorXd initial_x;
MatrixXdr initial_P;
MatrixXdr fake_gps_pos_cov;
MatrixXdr fake_gps_vel_cov;
MatrixXdr reset_orientation_P;
MatrixXdr Q; // process noise
std::unordered_map<int, MatrixXdr> obs_noise;
};

View File

@@ -0,0 +1,242 @@
#!/usr/bin/env python3
import sys
import os
import numpy as np
from openpilot.sunnypilot.selfdrive.locationd.models.constants import ObservationKind
import sympy as sp
import inspect
from rednose.helpers.sympy_helpers import euler_rotate, quat_matrix_r, quat_rotate
from rednose.helpers.ekf_sym import gen_code
EARTH_GM = 3.986005e14 # m^3/s^2 (gravitational constant * mass of earth)
def numpy2eigenstring(arr):
assert(len(arr.shape) == 1)
arr_str = np.array2string(arr, precision=20, separator=',')[1:-1].replace(' ', '').replace('\n', '')
return f"(Eigen::VectorXd({len(arr)}) << {arr_str}).finished()"
class States:
ECEF_POS = slice(0, 3) # x, y and z in ECEF in meters
ECEF_ORIENTATION = slice(3, 7) # quat for pose of phone in ecef
ECEF_VELOCITY = slice(7, 10) # ecef velocity in m/s
ANGULAR_VELOCITY = slice(10, 13) # roll, pitch and yaw rates in device frame in radians/s
GYRO_BIAS = slice(13, 16) # roll, pitch and yaw biases
ACCELERATION = slice(16, 19) # Acceleration in device frame in m/s**2
ACC_BIAS = slice(19, 22) # Acceletometer bias in m/s**2
# Error-state has different slices because it is an ESKF
ECEF_POS_ERR = slice(0, 3)
ECEF_ORIENTATION_ERR = slice(3, 6) # euler angles for orientation error
ECEF_VELOCITY_ERR = slice(6, 9)
ANGULAR_VELOCITY_ERR = slice(9, 12)
GYRO_BIAS_ERR = slice(12, 15)
ACCELERATION_ERR = slice(15, 18)
ACC_BIAS_ERR = slice(18, 21)
class LiveKalman:
name = 'live'
initial_x = np.array([3.88e6, -3.37e6, 3.76e6,
0.42254641, -0.31238054, -0.83602975, -0.15788347, # NED [0,0,0] -> ECEF Quat
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0])
# state covariance
initial_P_diag = np.array([10**2, 10**2, 10**2,
0.01**2, 0.01**2, 0.01**2,
10**2, 10**2, 10**2,
1**2, 1**2, 1**2,
1**2, 1**2, 1**2,
100**2, 100**2, 100**2,
0.01**2, 0.01**2, 0.01**2])
# state covariance when resetting midway in a segment
reset_orientation_diag = np.array([1**2, 1**2, 1**2])
# fake observation covariance, to ensure the uncertainty estimate of the filter is under control
fake_gps_pos_cov_diag = np.array([1000**2, 1000**2, 1000**2])
fake_gps_vel_cov_diag = np.array([10**2, 10**2, 10**2])
# process noise
Q_diag = np.array([0.03**2, 0.03**2, 0.03**2,
0.001**2, 0.001**2, 0.001**2,
0.01**2, 0.01**2, 0.01**2,
0.1**2, 0.1**2, 0.1**2,
(0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
3**2, 3**2, 3**2,
0.005**2, 0.005**2, 0.005**2])
obs_noise_diag = {ObservationKind.PHONE_GYRO: np.array([0.025**2, 0.025**2, 0.025**2]),
ObservationKind.PHONE_ACCEL: np.array([.5**2, .5**2, .5**2]),
ObservationKind.CAMERA_ODO_ROTATION: np.array([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.NO_ROT: np.array([0.005**2, 0.005**2, 0.005**2]),
ObservationKind.NO_ACCEL: np.array([0.05**2, 0.05**2, 0.05**2]),
ObservationKind.ECEF_POS: np.array([5**2, 5**2, 5**2]),
ObservationKind.ECEF_VEL: np.array([.5**2, .5**2, .5**2]),
ObservationKind.ECEF_ORIENTATION_FROM_GPS: np.array([.2**2, .2**2, .2**2, .2**2])}
@staticmethod
def generate_code(generated_dir):
name = LiveKalman.name
dim_state = LiveKalman.initial_x.shape[0]
dim_state_err = LiveKalman.initial_P_diag.shape[0]
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
x, y, z = state[States.ECEF_POS, :]
q = state[States.ECEF_ORIENTATION, :]
v = state[States.ECEF_VELOCITY, :]
vx, vy, vz = v
omega = state[States.ANGULAR_VELOCITY, :]
vroll, vpitch, vyaw = omega
roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :]
acceleration = state[States.ACCELERATION, :]
acc_bias = state[States.ACC_BIAS, :]
dt = sp.Symbol('dt')
# calibration and attitude rotation matrices
quat_rot = quat_rotate(*q)
# Got the quat predict equations from here
# A New Quaternion-Based Kalman Filter for
# Real-Time Attitude Estimation Using the Two-Step
# Geometrically-Intuitive Correction Algorithm
A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw],
[vroll, 0, vyaw, -vpitch],
[vpitch, -vyaw, 0, vroll],
[vyaw, vpitch, -vroll, 0]])
q_dot = A * q
# Time derivative of the state as a function of state
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[States.ECEF_POS, :] = v
state_dot[States.ECEF_ORIENTATION, :] = q_dot
state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration
# Basic descretization, 1st order intergrator
# Can be pretty bad if dt is big
f_sym = state + dt * state_dot
state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1)
state_err = sp.Matrix(state_err_sym)
quat_err = state_err[States.ECEF_ORIENTATION_ERR, :]
v_err = state_err[States.ECEF_VELOCITY_ERR, :]
omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :]
acceleration_err = state_err[States.ACCELERATION_ERR, :]
# Time derivative of the state error as a function of state error and state
quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2])
q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err)
state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1)))
state_err_dot[States.ECEF_POS_ERR, :] = v_err
state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot
state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err)
f_err_sym = state_err + dt * state_err_dot
# Observation matrix modifier
H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err)))
H_mod_sym[States.ECEF_POS, States.ECEF_POS_ERR] = np.eye(States.ECEF_POS.stop - States.ECEF_POS.start)
H_mod_sym[States.ECEF_ORIENTATION, States.ECEF_ORIENTATION_ERR] = 0.5 * quat_matrix_r(state[3:7])[:, 1:]
H_mod_sym[States.ECEF_ORIENTATION.stop:, States.ECEF_ORIENTATION_ERR.stop:] = np.eye(dim_state - States.ECEF_ORIENTATION.stop)
# these error functions are defined so that say there
# is a nominal x and true x:
# true x = err_function(nominal x, delta x)
# delta x = inv_err_function(nominal x, true x)
nom_x = sp.MatrixSymbol('nom_x', dim_state, 1)
true_x = sp.MatrixSymbol('true_x', dim_state, 1)
delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1)
err_function_sym = sp.Matrix(np.zeros((dim_state, 1)))
delta_quat = sp.Matrix(np.ones(4))
delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[States.ECEF_ORIENTATION_ERR, :])
err_function_sym[States.ECEF_POS, :] = sp.Matrix(nom_x[States.ECEF_POS, :] + delta_x[States.ECEF_POS_ERR, :])
err_function_sym[States.ECEF_ORIENTATION, 0] = quat_matrix_r(nom_x[States.ECEF_ORIENTATION, 0]) * delta_quat
err_function_sym[States.ECEF_ORIENTATION.stop:, :] = sp.Matrix(nom_x[States.ECEF_ORIENTATION.stop:, :] + delta_x[States.ECEF_ORIENTATION_ERR.stop:, :])
inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1)))
inv_err_function_sym[States.ECEF_POS_ERR, 0] = sp.Matrix(-nom_x[States.ECEF_POS, 0] + true_x[States.ECEF_POS, 0])
delta_quat = quat_matrix_r(nom_x[States.ECEF_ORIENTATION, 0]).T * true_x[States.ECEF_ORIENTATION, 0]
inv_err_function_sym[States.ECEF_ORIENTATION_ERR, 0] = sp.Matrix(2 * delta_quat[1:])
inv_err_function_sym[States.ECEF_ORIENTATION_ERR.stop:, 0] = sp.Matrix(-nom_x[States.ECEF_ORIENTATION.stop:, 0] + true_x[States.ECEF_ORIENTATION.stop:, 0])
eskf_params = [[err_function_sym, nom_x, delta_x],
[inv_err_function_sym, nom_x, true_x],
H_mod_sym, f_err_sym, state_err_sym]
#
# Observation functions
#
h_gyro_sym = sp.Matrix([
vroll + roll_bias,
vpitch + pitch_bias,
vyaw + yaw_bias])
pos = sp.Matrix([x, y, z])
gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2)**(3.0 / 2.0))) * pos)
h_acc_sym = (gravity + acceleration + acc_bias)
h_acc_stationary_sym = acceleration
h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw])
h_pos_sym = sp.Matrix([x, y, z])
h_vel_sym = sp.Matrix([vx, vy, vz])
h_orientation_sym = q
h_relative_motion = sp.Matrix(quat_rot.T * v)
obs_eqs = [[h_gyro_sym, ObservationKind.PHONE_GYRO, None],
[h_phone_rot_sym, ObservationKind.NO_ROT, None],
[h_acc_sym, ObservationKind.PHONE_ACCEL, None],
[h_pos_sym, ObservationKind.ECEF_POS, None],
[h_vel_sym, ObservationKind.ECEF_VEL, None],
[h_orientation_sym, ObservationKind.ECEF_ORIENTATION_FROM_GPS, None],
[h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
[h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
[h_acc_stationary_sym, ObservationKind.NO_ACCEL, None]]
# this returns a sympy routine for the jacobian of the observation function of the local vel
in_vec = sp.MatrixSymbol('in_vec', 6, 1) # roll, pitch, yaw, vx, vy, vz
h = euler_rotate(in_vec[0], in_vec[1], in_vec[2]).T * (sp.Matrix([in_vec[3], in_vec[4], in_vec[5]]))
extra_routines = [('H', h.jacobian(in_vec), [in_vec])]
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params, extra_routines=extra_routines)
# write constants to extra header file for use in cpp
live_kf_header = "#pragma once\n\n"
live_kf_header += "#include <unordered_map>\n"
live_kf_header += "#include <eigen3/Eigen/Dense>\n\n"
for state, slc in inspect.getmembers(States, lambda x: isinstance(x, slice)):
assert(slc.step is None) # unsupported
live_kf_header += f'#define STATE_{state}_START {slc.start}\n'
live_kf_header += f'#define STATE_{state}_END {slc.stop}\n'
live_kf_header += f'#define STATE_{state}_LEN {slc.stop - slc.start}\n'
live_kf_header += "\n"
for kind, val in inspect.getmembers(ObservationKind, lambda x: isinstance(x, int)):
live_kf_header += f'#define OBSERVATION_{kind} {val}\n'
live_kf_header += "\n"
live_kf_header += f"static const Eigen::VectorXd live_initial_x = {numpy2eigenstring(LiveKalman.initial_x)};\n"
live_kf_header += f"static const Eigen::VectorXd live_initial_P_diag = {numpy2eigenstring(LiveKalman.initial_P_diag)};\n"
live_kf_header += f"static const Eigen::VectorXd live_fake_gps_pos_cov_diag = {numpy2eigenstring(LiveKalman.fake_gps_pos_cov_diag)};\n"
live_kf_header += f"static const Eigen::VectorXd live_fake_gps_vel_cov_diag = {numpy2eigenstring(LiveKalman.fake_gps_vel_cov_diag)};\n"
live_kf_header += f"static const Eigen::VectorXd live_reset_orientation_diag = {numpy2eigenstring(LiveKalman.reset_orientation_diag)};\n"
live_kf_header += f"static const Eigen::VectorXd live_Q_diag = {numpy2eigenstring(LiveKalman.Q_diag)};\n"
live_kf_header += "static const std::unordered_map<int, Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> live_obs_noise_diag = {\n"
for kind, noise in LiveKalman.obs_noise_diag.items():
live_kf_header += f" {{ {kind}, {numpy2eigenstring(noise)} }},\n"
live_kf_header += "};\n\n"
open(os.path.join(generated_dir, "live_kf_constants.h"), 'w').write(live_kf_header)
if __name__ == "__main__":
generated_dir = sys.argv[2]
LiveKalman.generate_code(generated_dir)

View File

@@ -0,0 +1 @@
out/

View File

@@ -0,0 +1,89 @@
import pytest
import json
import random
import time
import capnp
import cereal.messaging as messaging
from cereal.services import SERVICE_LIST
from openpilot.common.params import Params
from openpilot.common.transformations.coordinates import ecef2geodetic
from openpilot.system.manager.process_config import managed_processes
class TestLocationdProc:
LLD_MSGS = ['gpsLocationExternal', 'cameraOdometry', 'carState', 'liveCalibration',
'accelerometer', 'gyroscope', 'magnetometer']
def setup_method(self):
self.pm = messaging.PubMaster(self.LLD_MSGS)
self.params = Params()
self.params.put_bool("UbloxAvailable", True)
managed_processes['locationd_llk'].prepare()
managed_processes['locationd_llk'].start()
def teardown_method(self):
managed_processes['locationd_llk'].stop()
def get_msg(self, name, t):
try:
msg = messaging.new_message(name)
except capnp.lib.capnp.KjException:
msg = messaging.new_message(name, 0)
if name == "gpsLocationExternal":
msg.gpsLocationExternal.flags = 1
msg.gpsLocationExternal.hasFix = True
msg.gpsLocationExternal.verticalAccuracy = 1.0
msg.gpsLocationExternal.speedAccuracy = 1.0
msg.gpsLocationExternal.bearingAccuracyDeg = 1.0
msg.gpsLocationExternal.vNED = [0.0, 0.0, 0.0]
msg.gpsLocationExternal.latitude = float(self.lat)
msg.gpsLocationExternal.longitude = float(self.lon)
msg.gpsLocationExternal.unixTimestampMillis = t * 1e6
msg.gpsLocationExternal.altitude = float(self.alt)
#if name == "gnssMeasurements":
# msg.gnssMeasurements.measTime = t
# msg.gnssMeasurements.positionECEF.value = [self.x , self.y, self.z]
# msg.gnssMeasurements.positionECEF.std = [0,0,0]
# msg.gnssMeasurements.positionECEF.valid = True
# msg.gnssMeasurements.velocityECEF.value = []
# msg.gnssMeasurements.velocityECEF.std = [0,0,0]
# msg.gnssMeasurements.velocityECEF.valid = True
elif name == 'cameraOdometry':
msg.cameraOdometry.rot = [0.0, 0.0, 0.0]
msg.cameraOdometry.rotStd = [0.0, 0.0, 0.0]
msg.cameraOdometry.trans = [0.0, 0.0, 0.0]
msg.cameraOdometry.transStd = [0.0, 0.0, 0.0]
msg.logMonoTime = t
msg.valid = True
return msg
def test_params_gps(self):
random.seed(123489234)
self.params.remove('LastGPSPositionLLK')
self.x = -2710700 + (random.random() * 1e5)
self.y = -4280600 + (random.random() * 1e5)
self.z = 3850300 + (random.random() * 1e5)
self.lat, self.lon, self.alt = ecef2geodetic([self.x, self.y, self.z])
# get fake messages at the correct frequency, listed in services.py
msgs = []
for sec in range(65):
for name in self.LLD_MSGS:
for j in range(int(SERVICE_LIST[name].frequency)):
msgs.append(self.get_msg(name, int((sec + j / SERVICE_LIST[name].frequency) * 1e9)))
for msg in sorted(msgs, key=lambda x: x.logMonoTime):
self.pm.send(msg.which(), msg)
if msg.which() == "cameraOdometry":
self.pm.wait_for_readers_to_update(msg.which(), 0.1, dt=0.005)
time.sleep(1) # wait for async params write
lastGPS = json.loads(self.params.get('LastGPSPositionLLK'))
assert lastGPS['latitude'] == pytest.approx(self.lat, abs=0.001)
assert lastGPS['longitude'] == pytest.approx(self.lon, abs=0.001)
assert lastGPS['altitude'] == pytest.approx(self.alt, abs=0.001)

1
sunnypilot/system/sensord/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
sensord

View File

@@ -0,0 +1,13 @@
Import('env', 'arch', 'common', 'messaging')
sensors = [
'sensors/i2c_sensor.cc',
'sensors/lsm6ds3_accel.cc',
'sensors/lsm6ds3_gyro.cc',
'sensors/lsm6ds3_temp.cc',
'sensors/mmc5603nj_magn.cc',
]
libs = [common, messaging, 'pthread']
if arch == "larch64":
libs.append('i2c')
env.Program('sensord', ['sensors_qcom2.cc'] + sensors, LIBS=libs)

View File

@@ -0,0 +1,85 @@
#include "sunnypilot/system/sensord/sensors/bmx055_accel.h"
#include <cassert>
#include "common/swaglog.h"
#include "common/timing.h"
#include "common/util.h"
BMX055_Accel::BMX055_Accel(I2CBus *bus) : I2CSensor(bus) {}
int BMX055_Accel::init() {
int ret = verify_chip_id(BMX055_ACCEL_I2C_REG_ID, {BMX055_ACCEL_CHIP_ID});
if (ret == -1) {
goto fail;
}
ret = set_register(BMX055_ACCEL_I2C_REG_PMU, BMX055_ACCEL_NORMAL_MODE);
if (ret < 0) {
goto fail;
}
// bmx055 accel has a 1.3ms wakeup time from deep suspend mode
util::sleep_for(10);
// High bandwidth
// ret = set_register(BMX055_ACCEL_I2C_REG_HBW, BMX055_ACCEL_HBW_ENABLE);
// if (ret < 0) {
// goto fail;
// }
// Low bandwidth
ret = set_register(BMX055_ACCEL_I2C_REG_HBW, BMX055_ACCEL_HBW_DISABLE);
if (ret < 0) {
goto fail;
}
ret = set_register(BMX055_ACCEL_I2C_REG_BW, BMX055_ACCEL_BW_125HZ);
if (ret < 0) {
goto fail;
}
enabled = true;
fail:
return ret;
}
int BMX055_Accel::shutdown() {
if (!enabled) return 0;
// enter deep suspend mode (lowest power mode)
int ret = set_register(BMX055_ACCEL_I2C_REG_PMU, BMX055_ACCEL_DEEP_SUSPEND);
if (ret < 0) {
LOGE("Could not move BMX055 ACCEL in deep suspend mode!");
}
return ret;
}
bool BMX055_Accel::get_event(MessageBuilder &msg, uint64_t ts) {
uint64_t start_time = nanos_since_boot();
uint8_t buffer[6];
int len = read_register(BMX055_ACCEL_I2C_REG_X_LSB, buffer, sizeof(buffer));
assert(len == 6);
// 12 bit = +-2g
float scale = 9.81 * 2.0f / (1 << 11);
float x = -read_12_bit(buffer[0], buffer[1]) * scale;
float y = -read_12_bit(buffer[2], buffer[3]) * scale;
float z = read_12_bit(buffer[4], buffer[5]) * scale;
auto event = msg.initEvent().initAccelerometer2();
event.setSource(cereal::SensorEventData::SensorSource::BMX055);
event.setVersion(1);
event.setSensor(SENSOR_ACCELEROMETER);
event.setType(SENSOR_TYPE_ACCELEROMETER);
event.setTimestamp(start_time);
float xyz[] = {x, y, z};
auto svec = event.initAcceleration();
svec.setV(xyz);
svec.setStatus(true);
return true;
}

View File

@@ -0,0 +1,41 @@
#pragma once
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
// Address of the chip on the bus
#define BMX055_ACCEL_I2C_ADDR 0x18
// Registers of the chip
#define BMX055_ACCEL_I2C_REG_ID 0x00
#define BMX055_ACCEL_I2C_REG_X_LSB 0x02
#define BMX055_ACCEL_I2C_REG_TEMP 0x08
#define BMX055_ACCEL_I2C_REG_BW 0x10
#define BMX055_ACCEL_I2C_REG_PMU 0x11
#define BMX055_ACCEL_I2C_REG_HBW 0x13
#define BMX055_ACCEL_I2C_REG_FIFO 0x3F
// Constants
#define BMX055_ACCEL_CHIP_ID 0xFA
#define BMX055_ACCEL_HBW_ENABLE 0b10000000
#define BMX055_ACCEL_HBW_DISABLE 0b00000000
#define BMX055_ACCEL_DEEP_SUSPEND 0b00100000
#define BMX055_ACCEL_NORMAL_MODE 0b00000000
#define BMX055_ACCEL_BW_7_81HZ 0b01000
#define BMX055_ACCEL_BW_15_63HZ 0b01001
#define BMX055_ACCEL_BW_31_25HZ 0b01010
#define BMX055_ACCEL_BW_62_5HZ 0b01011
#define BMX055_ACCEL_BW_125HZ 0b01100
#define BMX055_ACCEL_BW_250HZ 0b01101
#define BMX055_ACCEL_BW_500HZ 0b01110
#define BMX055_ACCEL_BW_1000HZ 0b01111
class BMX055_Accel : public I2CSensor {
uint8_t get_device_address() {return BMX055_ACCEL_I2C_ADDR;}
public:
BMX055_Accel(I2CBus *bus);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown();
};

View File

@@ -0,0 +1,92 @@
#include "sunnypilot/system/sensord/sensors/bmx055_gyro.h"
#include <cassert>
#include <cmath>
#include "common/swaglog.h"
#include "common/util.h"
#define DEG2RAD(x) ((x) * M_PI / 180.0)
BMX055_Gyro::BMX055_Gyro(I2CBus *bus) : I2CSensor(bus) {}
int BMX055_Gyro::init() {
int ret = verify_chip_id(BMX055_GYRO_I2C_REG_ID, {BMX055_GYRO_CHIP_ID});
if (ret == -1) return -1;
ret = set_register(BMX055_GYRO_I2C_REG_LPM1, BMX055_GYRO_NORMAL_MODE);
if (ret < 0) {
goto fail;
}
// bmx055 gyro has a 30ms wakeup time from deep suspend mode
util::sleep_for(50);
// High bandwidth
// ret = set_register(BMX055_GYRO_I2C_REG_HBW, BMX055_GYRO_HBW_ENABLE);
// if (ret < 0) {
// goto fail;
// }
// Low bandwidth
ret = set_register(BMX055_GYRO_I2C_REG_HBW, BMX055_GYRO_HBW_DISABLE);
if (ret < 0) {
goto fail;
}
// 116 Hz filter
ret = set_register(BMX055_GYRO_I2C_REG_BW, BMX055_GYRO_BW_116HZ);
if (ret < 0) {
goto fail;
}
// +- 125 deg/s range
ret = set_register(BMX055_GYRO_I2C_REG_RANGE, BMX055_GYRO_RANGE_125);
if (ret < 0) {
goto fail;
}
enabled = true;
fail:
return ret;
}
int BMX055_Gyro::shutdown() {
if (!enabled) return 0;
// enter deep suspend mode (lowest power mode)
int ret = set_register(BMX055_GYRO_I2C_REG_LPM1, BMX055_GYRO_DEEP_SUSPEND);
if (ret < 0) {
LOGE("Could not move BMX055 GYRO in deep suspend mode!");
}
return ret;
}
bool BMX055_Gyro::get_event(MessageBuilder &msg, uint64_t ts) {
uint64_t start_time = nanos_since_boot();
uint8_t buffer[6];
int len = read_register(BMX055_GYRO_I2C_REG_RATE_X_LSB, buffer, sizeof(buffer));
assert(len == 6);
// 16 bit = +- 125 deg/s
float scale = 125.0f / (1 << 15);
float x = -DEG2RAD(read_16_bit(buffer[0], buffer[1]) * scale);
float y = -DEG2RAD(read_16_bit(buffer[2], buffer[3]) * scale);
float z = DEG2RAD(read_16_bit(buffer[4], buffer[5]) * scale);
auto event = msg.initEvent().initGyroscope2();
event.setSource(cereal::SensorEventData::SensorSource::BMX055);
event.setVersion(1);
event.setSensor(SENSOR_GYRO_UNCALIBRATED);
event.setType(SENSOR_TYPE_GYROSCOPE_UNCALIBRATED);
event.setTimestamp(start_time);
float xyz[] = {x, y, z};
auto svec = event.initGyroUncalibrated();
svec.setV(xyz);
svec.setStatus(true);
return true;
}

View File

@@ -0,0 +1,41 @@
#pragma once
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
// Address of the chip on the bus
#define BMX055_GYRO_I2C_ADDR 0x68
// Registers of the chip
#define BMX055_GYRO_I2C_REG_ID 0x00
#define BMX055_GYRO_I2C_REG_RATE_X_LSB 0x02
#define BMX055_GYRO_I2C_REG_RANGE 0x0F
#define BMX055_GYRO_I2C_REG_BW 0x10
#define BMX055_GYRO_I2C_REG_LPM1 0x11
#define BMX055_GYRO_I2C_REG_HBW 0x13
#define BMX055_GYRO_I2C_REG_FIFO 0x3F
// Constants
#define BMX055_GYRO_CHIP_ID 0x0F
#define BMX055_GYRO_HBW_ENABLE 0b10000000
#define BMX055_GYRO_HBW_DISABLE 0b00000000
#define BMX055_GYRO_DEEP_SUSPEND 0b00100000
#define BMX055_GYRO_NORMAL_MODE 0b00000000
#define BMX055_GYRO_RANGE_2000 0b000
#define BMX055_GYRO_RANGE_1000 0b001
#define BMX055_GYRO_RANGE_500 0b010
#define BMX055_GYRO_RANGE_250 0b011
#define BMX055_GYRO_RANGE_125 0b100
#define BMX055_GYRO_BW_116HZ 0b0010
class BMX055_Gyro : public I2CSensor {
uint8_t get_device_address() {return BMX055_GYRO_I2C_ADDR;}
public:
BMX055_Gyro(I2CBus *bus);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown();
};

View File

@@ -0,0 +1,258 @@
#include "sunnypilot/system/sensord/sensors/bmx055_magn.h"
#include <unistd.h>
#include <algorithm>
#include <cassert>
#include <cstdio>
#include "common/swaglog.h"
#include "common/util.h"
static int16_t compensate_x(trim_data_t trim_data, int16_t mag_data_x, uint16_t data_rhall) {
uint16_t process_comp_x0 = data_rhall;
int32_t process_comp_x1 = ((int32_t)trim_data.dig_xyz1) * 16384;
uint16_t process_comp_x2 = ((uint16_t)(process_comp_x1 / process_comp_x0)) - ((uint16_t)0x4000);
int16_t retval = ((int16_t)process_comp_x2);
int32_t process_comp_x3 = (((int32_t)retval) * ((int32_t)retval));
int32_t process_comp_x4 = (((int32_t)trim_data.dig_xy2) * (process_comp_x3 / 128));
int32_t process_comp_x5 = (int32_t)(((int16_t)trim_data.dig_xy1) * 128);
int32_t process_comp_x6 = ((int32_t)retval) * process_comp_x5;
int32_t process_comp_x7 = (((process_comp_x4 + process_comp_x6) / 512) + ((int32_t)0x100000));
int32_t process_comp_x8 = ((int32_t)(((int16_t)trim_data.dig_x2) + ((int16_t)0xA0)));
int32_t process_comp_x9 = ((process_comp_x7 * process_comp_x8) / 4096);
int32_t process_comp_x10 = ((int32_t)mag_data_x) * process_comp_x9;
retval = ((int16_t)(process_comp_x10 / 8192));
retval = (retval + (((int16_t)trim_data.dig_x1) * 8)) / 16;
return retval;
}
static int16_t compensate_y(trim_data_t trim_data, int16_t mag_data_y, uint16_t data_rhall) {
uint16_t process_comp_y0 = trim_data.dig_xyz1;
int32_t process_comp_y1 = (((int32_t)trim_data.dig_xyz1) * 16384) / process_comp_y0;
uint16_t process_comp_y2 = ((uint16_t)process_comp_y1) - ((uint16_t)0x4000);
int16_t retval = ((int16_t)process_comp_y2);
int32_t process_comp_y3 = ((int32_t) retval) * ((int32_t)retval);
int32_t process_comp_y4 = ((int32_t)trim_data.dig_xy2) * (process_comp_y3 / 128);
int32_t process_comp_y5 = ((int32_t)(((int16_t)trim_data.dig_xy1) * 128));
int32_t process_comp_y6 = ((process_comp_y4 + (((int32_t)retval) * process_comp_y5)) / 512);
int32_t process_comp_y7 = ((int32_t)(((int16_t)trim_data.dig_y2) + ((int16_t)0xA0)));
int32_t process_comp_y8 = (((process_comp_y6 + ((int32_t)0x100000)) * process_comp_y7) / 4096);
int32_t process_comp_y9 = (((int32_t)mag_data_y) * process_comp_y8);
retval = (int16_t)(process_comp_y9 / 8192);
retval = (retval + (((int16_t)trim_data.dig_y1) * 8)) / 16;
return retval;
}
static int16_t compensate_z(trim_data_t trim_data, int16_t mag_data_z, uint16_t data_rhall) {
int16_t process_comp_z0 = ((int16_t)data_rhall) - ((int16_t) trim_data.dig_xyz1);
int32_t process_comp_z1 = (((int32_t)trim_data.dig_z3) * ((int32_t)(process_comp_z0))) / 4;
int32_t process_comp_z2 = (((int32_t)(mag_data_z - trim_data.dig_z4)) * 32768);
int32_t process_comp_z3 = ((int32_t)trim_data.dig_z1) * (((int16_t)data_rhall) * 2);
int16_t process_comp_z4 = (int16_t)((process_comp_z3 + (32768)) / 65536);
int32_t retval = ((process_comp_z2 - process_comp_z1) / (trim_data.dig_z2 + process_comp_z4));
/* saturate result to +/- 2 micro-tesla */
retval = std::clamp(retval, -32767, 32767);
/* Conversion of LSB to micro-tesla*/
retval = retval / 16;
return (int16_t)retval;
}
BMX055_Magn::BMX055_Magn(I2CBus *bus) : I2CSensor(bus) {}
int BMX055_Magn::init() {
uint8_t trim_x1y1[2] = {0};
uint8_t trim_x2y2[2] = {0};
uint8_t trim_xy1xy2[2] = {0};
uint8_t trim_z1[2] = {0};
uint8_t trim_z2[2] = {0};
uint8_t trim_z3[2] = {0};
uint8_t trim_z4[2] = {0};
uint8_t trim_xyz1[2] = {0};
// suspend -> sleep
int ret = set_register(BMX055_MAGN_I2C_REG_PWR_0, 0x01);
if (ret < 0) {
LOGD("Enabling power failed: %d", ret);
goto fail;
}
util::sleep_for(5); // wait until the chip is powered on
ret = verify_chip_id(BMX055_MAGN_I2C_REG_ID, {BMX055_MAGN_CHIP_ID});
if (ret == -1) {
goto fail;
}
// Load magnetometer trim
ret = read_register(BMX055_MAGN_I2C_REG_DIG_X1, trim_x1y1, 2);
if (ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_X2, trim_x2y2, 2);
if (ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_XY2, trim_xy1xy2, 2);
if (ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z1_LSB, trim_z1, 2);
if (ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z2_LSB, trim_z2, 2);
if (ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z3_LSB, trim_z3, 2);
if (ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z4_LSB, trim_z4, 2);
if (ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_XYZ1_LSB, trim_xyz1, 2);
if (ret < 0) goto fail;
// Read trim data
trim_data.dig_x1 = trim_x1y1[0];
trim_data.dig_y1 = trim_x1y1[1];
trim_data.dig_x2 = trim_x2y2[0];
trim_data.dig_y2 = trim_x2y2[1];
trim_data.dig_xy1 = trim_xy1xy2[1]; // NB: MSB/LSB swapped
trim_data.dig_xy2 = trim_xy1xy2[0];
trim_data.dig_z1 = read_16_bit(trim_z1[0], trim_z1[1]);
trim_data.dig_z2 = read_16_bit(trim_z2[0], trim_z2[1]);
trim_data.dig_z3 = read_16_bit(trim_z3[0], trim_z3[1]);
trim_data.dig_z4 = read_16_bit(trim_z4[0], trim_z4[1]);
trim_data.dig_xyz1 = read_16_bit(trim_xyz1[0], trim_xyz1[1] & 0x7f);
assert(trim_data.dig_xyz1 != 0);
perform_self_test();
// f_max = 1 / (145us * nXY + 500us * NZ + 980us)
// Chose NXY = 7, NZ = 12, which gives 125 Hz,
// and has the same ratio as the high accuracy preset
ret = set_register(BMX055_MAGN_I2C_REG_REPXY, (7 - 1) / 2);
if (ret < 0) {
goto fail;
}
ret = set_register(BMX055_MAGN_I2C_REG_REPZ, 12 - 1);
if (ret < 0) {
goto fail;
}
enabled = true;
return 0;
fail:
return ret;
}
int BMX055_Magn::shutdown() {
if (!enabled) return 0;
// move to suspend mode
int ret = set_register(BMX055_MAGN_I2C_REG_PWR_0, 0);
if (ret < 0) {
LOGE("Could not move BMX055 MAGN in suspend mode!");
}
return ret;
}
bool BMX055_Magn::perform_self_test() {
uint8_t buffer[8];
int16_t x, y;
int16_t neg_z, pos_z;
// Increase z reps for less false positives (~30 Hz ODR)
set_register(BMX055_MAGN_I2C_REG_REPXY, 1);
set_register(BMX055_MAGN_I2C_REG_REPZ, 64 - 1);
// Clean existing measurement
read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
uint8_t forced = BMX055_MAGN_FORCED;
// Negative current
set_register(BMX055_MAGN_I2C_REG_MAG, forced | (uint8_t(0b10) << 6));
util::sleep_for(100);
read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
parse_xyz(buffer, &x, &y, &neg_z);
// Positive current
set_register(BMX055_MAGN_I2C_REG_MAG, forced | (uint8_t(0b11) << 6));
util::sleep_for(100);
read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
parse_xyz(buffer, &x, &y, &pos_z);
// Put back in normal mode
set_register(BMX055_MAGN_I2C_REG_MAG, 0);
int16_t diff = pos_z - neg_z;
bool passed = (diff > 180) && (diff < 240);
if (!passed) {
LOGE("self test failed: neg %d pos %d diff %d", neg_z, pos_z, diff);
}
return passed;
}
bool BMX055_Magn::parse_xyz(uint8_t buffer[8], int16_t *x, int16_t *y, int16_t *z) {
bool ready = buffer[6] & 0x1;
if (ready) {
int16_t mdata_x = (int16_t) (((int16_t)buffer[1] << 8) | buffer[0]) >> 3;
int16_t mdata_y = (int16_t) (((int16_t)buffer[3] << 8) | buffer[2]) >> 3;
int16_t mdata_z = (int16_t) (((int16_t)buffer[5] << 8) | buffer[4]) >> 1;
uint16_t data_r = (uint16_t) (((uint16_t)buffer[7] << 8) | buffer[6]) >> 2;
assert(data_r != 0);
*x = compensate_x(trim_data, mdata_x, data_r);
*y = compensate_y(trim_data, mdata_y, data_r);
*z = compensate_z(trim_data, mdata_z, data_r);
}
return ready;
}
bool BMX055_Magn::get_event(MessageBuilder &msg, uint64_t ts) {
uint64_t start_time = nanos_since_boot();
uint8_t buffer[8];
int16_t _x, _y, x, y, z;
int len = read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
bool parsed = parse_xyz(buffer, &_x, &_y, &z);
if (parsed) {
auto event = msg.initEvent().initMagnetometer();
event.setSource(cereal::SensorEventData::SensorSource::BMX055);
event.setVersion(2);
event.setSensor(SENSOR_MAGNETOMETER_UNCALIBRATED);
event.setType(SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED);
event.setTimestamp(start_time);
// Move magnetometer into same reference frame as accel/gryo
x = -_y;
y = _x;
// Axis convention
x = -x;
y = -y;
float xyz[] = {(float)x, (float)y, (float)z};
auto svec = event.initMagneticUncalibrated();
svec.setV(xyz);
svec.setStatus(true);
}
// The BMX055 Magnetometer has no FIFO mode. Self running mode only goes
// up to 30 Hz. Therefore we put in forced mode, and request measurements
// at a 100 Hz. When reading the registers we have to check the ready bit
// To verify the measurement was completed this cycle.
set_register(BMX055_MAGN_I2C_REG_MAG, BMX055_MAGN_FORCED);
return parsed;
}

View File

@@ -0,0 +1,64 @@
#pragma once
#include <tuple>
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
// Address of the chip on the bus
#define BMX055_MAGN_I2C_ADDR 0x10
// Registers of the chip
#define BMX055_MAGN_I2C_REG_ID 0x40
#define BMX055_MAGN_I2C_REG_PWR_0 0x4B
#define BMX055_MAGN_I2C_REG_MAG 0x4C
#define BMX055_MAGN_I2C_REG_DATAX_LSB 0x42
#define BMX055_MAGN_I2C_REG_RHALL_LSB 0x48
#define BMX055_MAGN_I2C_REG_REPXY 0x51
#define BMX055_MAGN_I2C_REG_REPZ 0x52
#define BMX055_MAGN_I2C_REG_DIG_X1 0x5D
#define BMX055_MAGN_I2C_REG_DIG_Y1 0x5E
#define BMX055_MAGN_I2C_REG_DIG_Z4_LSB 0x62
#define BMX055_MAGN_I2C_REG_DIG_Z4_MSB 0x63
#define BMX055_MAGN_I2C_REG_DIG_X2 0x64
#define BMX055_MAGN_I2C_REG_DIG_Y2 0x65
#define BMX055_MAGN_I2C_REG_DIG_Z2_LSB 0x68
#define BMX055_MAGN_I2C_REG_DIG_Z2_MSB 0x69
#define BMX055_MAGN_I2C_REG_DIG_Z1_LSB 0x6A
#define BMX055_MAGN_I2C_REG_DIG_Z1_MSB 0x6B
#define BMX055_MAGN_I2C_REG_DIG_XYZ1_LSB 0x6C
#define BMX055_MAGN_I2C_REG_DIG_XYZ1_MSB 0x6D
#define BMX055_MAGN_I2C_REG_DIG_Z3_LSB 0x6E
#define BMX055_MAGN_I2C_REG_DIG_Z3_MSB 0x6F
#define BMX055_MAGN_I2C_REG_DIG_XY2 0x70
#define BMX055_MAGN_I2C_REG_DIG_XY1 0x71
// Constants
#define BMX055_MAGN_CHIP_ID 0x32
#define BMX055_MAGN_FORCED (0b01 << 1)
struct trim_data_t {
int8_t dig_x1;
int8_t dig_y1;
int8_t dig_x2;
int8_t dig_y2;
uint16_t dig_z1;
int16_t dig_z2;
int16_t dig_z3;
int16_t dig_z4;
uint8_t dig_xy1;
int8_t dig_xy2;
uint16_t dig_xyz1;
};
class BMX055_Magn : public I2CSensor{
uint8_t get_device_address() {return BMX055_MAGN_I2C_ADDR;}
trim_data_t trim_data = {0};
bool perform_self_test();
bool parse_xyz(uint8_t buffer[8], int16_t *x, int16_t *y, int16_t *z);
public:
BMX055_Magn(I2CBus *bus);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown();
};

View File

@@ -0,0 +1,31 @@
#include "sunnypilot/system/sensord/sensors/bmx055_temp.h"
#include <cassert>
#include "sunnypilot/system/sensord/sensors/bmx055_accel.h"
#include "common/swaglog.h"
#include "common/timing.h"
BMX055_Temp::BMX055_Temp(I2CBus *bus) : I2CSensor(bus) {}
int BMX055_Temp::init() {
return verify_chip_id(BMX055_ACCEL_I2C_REG_ID, {BMX055_ACCEL_CHIP_ID}) == -1 ? -1 : 0;
}
bool BMX055_Temp::get_event(MessageBuilder &msg, uint64_t ts) {
uint64_t start_time = nanos_since_boot();
uint8_t buffer[1];
int len = read_register(BMX055_ACCEL_I2C_REG_TEMP, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
float temp = 23.0f + int8_t(buffer[0]) / 2.0f;
auto event = msg.initEvent().initTemperatureSensor();
event.setSource(cereal::SensorEventData::SensorSource::BMX055);
event.setVersion(1);
event.setType(SENSOR_TYPE_AMBIENT_TEMPERATURE);
event.setTimestamp(start_time);
event.setTemperature(temp);
return true;
}

View File

@@ -0,0 +1,13 @@
#pragma once
#include "sunnypilot/system/sensord/sensors/bmx055_accel.h"
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
class BMX055_Temp : public I2CSensor {
uint8_t get_device_address() {return BMX055_ACCEL_I2C_ADDR;}
public:
BMX055_Temp(I2CBus *bus);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown() { return 0; }
};

View File

@@ -0,0 +1,18 @@
#pragma once
#define SENSOR_ACCELEROMETER 1
#define SENSOR_MAGNETOMETER 2
#define SENSOR_MAGNETOMETER_UNCALIBRATED 3
#define SENSOR_GYRO 4
#define SENSOR_GYRO_UNCALIBRATED 5
#define SENSOR_LIGHT 7
#define SENSOR_TYPE_ACCELEROMETER 1
#define SENSOR_TYPE_GEOMAGNETIC_FIELD 2
#define SENSOR_TYPE_GYROSCOPE 4
#define SENSOR_TYPE_LIGHT 5
#define SENSOR_TYPE_AMBIENT_TEMPERATURE 13
#define SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED 14
#define SENSOR_TYPE_MAGNETIC_FIELD SENSOR_TYPE_GEOMAGNETIC_FIELD
#define SENSOR_TYPE_GYROSCOPE_UNCALIBRATED 16

View File

@@ -0,0 +1,50 @@
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
int16_t read_12_bit(uint8_t lsb, uint8_t msb) {
uint16_t combined = (uint16_t(msb) << 8) | uint16_t(lsb & 0xF0);
return int16_t(combined) / (1 << 4);
}
int16_t read_16_bit(uint8_t lsb, uint8_t msb) {
uint16_t combined = (uint16_t(msb) << 8) | uint16_t(lsb);
return int16_t(combined);
}
int32_t read_20_bit(uint8_t b2, uint8_t b1, uint8_t b0) {
uint32_t combined = (uint32_t(b0) << 16) | (uint32_t(b1) << 8) | uint32_t(b2);
return int32_t(combined) / (1 << 4);
}
I2CSensor::I2CSensor(I2CBus *bus, int gpio_nr, bool shared_gpio) :
bus(bus), gpio_nr(gpio_nr), shared_gpio(shared_gpio) {}
I2CSensor::~I2CSensor() {
if (gpio_fd != -1) {
close(gpio_fd);
}
}
int I2CSensor::read_register(uint register_address, uint8_t *buffer, uint8_t len) {
return bus->read_register(get_device_address(), register_address, buffer, len);
}
int I2CSensor::set_register(uint register_address, uint8_t data) {
return bus->set_register(get_device_address(), register_address, data);
}
int I2CSensor::init_gpio() {
if (shared_gpio || gpio_nr == 0) {
return 0;
}
gpio_fd = gpiochip_get_ro_value_fd("sensord", GPIOCHIP_INT, gpio_nr);
if (gpio_fd < 0) {
return -1;
}
return 0;
}
bool I2CSensor::has_interrupt_enabled() {
return gpio_nr != 0;
}

View File

@@ -0,0 +1,51 @@
#pragma once
#include <cstdint>
#include <unistd.h>
#include <vector>
#include "cereal/gen/cpp/log.capnp.h"
#include "common/i2c.h"
#include "common/gpio.h"
#include "common/swaglog.h"
#include "sunnypilot/system/sensord/sensors/constants.h"
#include "sunnypilot/system/sensord/sensors/sensor.h"
int16_t read_12_bit(uint8_t lsb, uint8_t msb);
int16_t read_16_bit(uint8_t lsb, uint8_t msb);
int32_t read_20_bit(uint8_t b2, uint8_t b1, uint8_t b0);
class I2CSensor : public Sensor {
private:
I2CBus *bus;
int gpio_nr;
bool shared_gpio;
virtual uint8_t get_device_address() = 0;
public:
I2CSensor(I2CBus *bus, int gpio_nr = 0, bool shared_gpio = false);
~I2CSensor();
int read_register(uint register_address, uint8_t *buffer, uint8_t len);
int set_register(uint register_address, uint8_t data);
int init_gpio();
bool has_interrupt_enabled();
virtual int init() = 0;
virtual bool get_event(MessageBuilder &msg, uint64_t ts = 0) = 0;
virtual int shutdown() = 0;
int verify_chip_id(uint8_t address, const std::vector<uint8_t> &expected_ids) {
uint8_t chip_id = 0;
int ret = read_register(address, &chip_id, 1);
if (ret < 0) {
LOGD("Reading chip ID failed: %d", ret);
return -1;
}
for (int i = 0; i < expected_ids.size(); ++i) {
if (chip_id == expected_ids[i]) return chip_id;
}
LOGE("Chip ID wrong. Got: %d, Expected %d", chip_id, expected_ids[0]);
return -1;
}
};

View File

@@ -0,0 +1,250 @@
#include "sunnypilot/system/sensord/sensors/lsm6ds3_accel.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include "common/swaglog.h"
#include "common/timing.h"
#include "common/util.h"
LSM6DS3_Accel::LSM6DS3_Accel(I2CBus *bus, int gpio_nr, bool shared_gpio) :
I2CSensor(bus, gpio_nr, shared_gpio) {}
void LSM6DS3_Accel::wait_for_data_ready() {
uint8_t drdy = 0;
uint8_t buffer[6];
do {
read_register(LSM6DS3_ACCEL_I2C_REG_STAT_REG, &drdy, sizeof(drdy));
drdy &= LSM6DS3_ACCEL_DRDY_XLDA;
} while (drdy == 0);
read_register(LSM6DS3_ACCEL_I2C_REG_OUTX_L_XL, buffer, sizeof(buffer));
}
void LSM6DS3_Accel::read_and_avg_data(float* out_buf) {
uint8_t drdy = 0;
uint8_t buffer[6];
float scaling = 0.061f;
if (source == cereal::SensorEventData::SensorSource::LSM6DS3TRC) {
scaling = 0.122f;
}
for (int i = 0; i < 5; i++) {
do {
read_register(LSM6DS3_ACCEL_I2C_REG_STAT_REG, &drdy, sizeof(drdy));
drdy &= LSM6DS3_ACCEL_DRDY_XLDA;
} while (drdy == 0);
int len = read_register(LSM6DS3_ACCEL_I2C_REG_OUTX_L_XL, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
for (int j = 0; j < 3; j++) {
out_buf[j] += (float)read_16_bit(buffer[j*2], buffer[j*2+1]) * scaling;
}
}
for (int i = 0; i < 3; i++) {
out_buf[i] /= 5.0f;
}
}
int LSM6DS3_Accel::self_test(int test_type) {
float val_st_off[3] = {0};
float val_st_on[3] = {0};
float test_val[3] = {0};
uint8_t ODR_FS_MO = LSM6DS3_ACCEL_ODR_52HZ; // full scale: +-2g, ODR: 52Hz
// prepare sensor for self-test
// enable block data update and automatic increment
int ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL3_C, LSM6DS3_ACCEL_IF_INC_BDU);
if (ret < 0) {
return ret;
}
if (source == cereal::SensorEventData::SensorSource::LSM6DS3TRC) {
ODR_FS_MO = LSM6DS3_ACCEL_FS_4G | LSM6DS3_ACCEL_ODR_52HZ;
}
ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, ODR_FS_MO);
if (ret < 0) {
return ret;
}
// wait for stable output, and discard first values
util::sleep_for(100);
wait_for_data_ready();
read_and_avg_data(val_st_off);
// enable Self Test positive (or negative)
ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL5_C, test_type);
if (ret < 0) {
return ret;
}
// wait for stable output, and discard first values
util::sleep_for(100);
wait_for_data_ready();
read_and_avg_data(val_st_on);
// disable sensor
ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, 0);
if (ret < 0) {
return ret;
}
// disable self test
ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL5_C, 0);
if (ret < 0) {
return ret;
}
// calculate the mg values for self test
for (int i = 0; i < 3; i++) {
test_val[i] = fabs(val_st_on[i] - val_st_off[i]);
}
// verify test result
for (int i = 0; i < 3; i++) {
if ((LSM6DS3_ACCEL_MIN_ST_LIMIT_mg > test_val[i]) ||
(test_val[i] > LSM6DS3_ACCEL_MAX_ST_LIMIT_mg)) {
return -1;
}
}
return ret;
}
int LSM6DS3_Accel::init() {
uint8_t value = 0;
bool do_self_test = false;
const char* env_lsm_selftest = std::getenv("LSM_SELF_TEST");
if (env_lsm_selftest != nullptr && strncmp(env_lsm_selftest, "1", 1) == 0) {
do_self_test = true;
}
int ret = verify_chip_id(LSM6DS3_ACCEL_I2C_REG_ID, {LSM6DS3_ACCEL_CHIP_ID, LSM6DS3TRC_ACCEL_CHIP_ID});
if (ret == -1) return -1;
if (ret == LSM6DS3TRC_ACCEL_CHIP_ID) {
source = cereal::SensorEventData::SensorSource::LSM6DS3TRC;
}
ret = self_test(LSM6DS3_ACCEL_POSITIVE_TEST);
if (ret < 0) {
LOGE("LSM6DS3 accel positive self-test failed!");
if (do_self_test) goto fail;
}
ret = self_test(LSM6DS3_ACCEL_NEGATIVE_TEST);
if (ret < 0) {
LOGE("LSM6DS3 accel negative self-test failed!");
if (do_self_test) goto fail;
}
ret = init_gpio();
if (ret < 0) {
goto fail;
}
// enable continuous update, and automatic increase
ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL3_C, LSM6DS3_ACCEL_IF_INC);
if (ret < 0) {
goto fail;
}
// TODO: set scale and bandwidth. Default is +- 2G, 50 Hz
ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, LSM6DS3_ACCEL_ODR_104HZ);
if (ret < 0) {
goto fail;
}
ret = set_register(LSM6DS3_ACCEL_I2C_REG_DRDY_CFG, LSM6DS3_ACCEL_DRDY_PULSE_MODE);
if (ret < 0) {
goto fail;
}
// enable data ready interrupt for accel on INT1
// (without resetting existing interrupts)
ret = read_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, &value, 1);
if (ret < 0) {
goto fail;
}
value |= LSM6DS3_ACCEL_INT1_DRDY_XL;
ret = set_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, value);
fail:
return ret;
}
int LSM6DS3_Accel::shutdown() {
int ret = 0;
// disable data ready interrupt for accel on INT1
uint8_t value = 0;
ret = read_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, &value, 1);
if (ret < 0) {
goto fail;
}
value &= ~(LSM6DS3_ACCEL_INT1_DRDY_XL);
ret = set_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, value);
if (ret < 0) {
LOGE("Could not disable lsm6ds3 acceleration interrupt!");
goto fail;
}
// enable power-down mode
value = 0;
ret = read_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, &value, 1);
if (ret < 0) {
goto fail;
}
value &= 0x0F;
ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, value);
if (ret < 0) {
LOGE("Could not power-down lsm6ds3 accelerometer!");
goto fail;
}
fail:
return ret;
}
bool LSM6DS3_Accel::get_event(MessageBuilder &msg, uint64_t ts) {
// INT1 shared with gyro, check STATUS_REG who triggered
uint8_t status_reg = 0;
read_register(LSM6DS3_ACCEL_I2C_REG_STAT_REG, &status_reg, sizeof(status_reg));
if ((status_reg & LSM6DS3_ACCEL_DRDY_XLDA) == 0) {
return false;
}
uint8_t buffer[6];
int len = read_register(LSM6DS3_ACCEL_I2C_REG_OUTX_L_XL, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
float scale = 9.81 * 2.0f / (1 << 15);
float x = read_16_bit(buffer[0], buffer[1]) * scale;
float y = read_16_bit(buffer[2], buffer[3]) * scale;
float z = read_16_bit(buffer[4], buffer[5]) * scale;
auto event = msg.initEvent().initAccelerometer();
event.setSource(source);
event.setVersion(1);
event.setSensor(SENSOR_ACCELEROMETER);
event.setType(SENSOR_TYPE_ACCELEROMETER);
event.setTimestamp(ts);
float xyz[] = {y, -x, z};
auto svec = event.initAcceleration();
svec.setV(xyz);
svec.setStatus(true);
return true;
}

View File

@@ -0,0 +1,49 @@
#pragma once
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
// Address of the chip on the bus
#define LSM6DS3_ACCEL_I2C_ADDR 0x6A
// Registers of the chip
#define LSM6DS3_ACCEL_I2C_REG_DRDY_CFG 0x0B
#define LSM6DS3_ACCEL_I2C_REG_ID 0x0F
#define LSM6DS3_ACCEL_I2C_REG_INT1_CTRL 0x0D
#define LSM6DS3_ACCEL_I2C_REG_CTRL1_XL 0x10
#define LSM6DS3_ACCEL_I2C_REG_CTRL3_C 0x12
#define LSM6DS3_ACCEL_I2C_REG_CTRL5_C 0x14
#define LSM6DS3_ACCEL_I2C_REG_CTR9_XL 0x18
#define LSM6DS3_ACCEL_I2C_REG_STAT_REG 0x1E
#define LSM6DS3_ACCEL_I2C_REG_OUTX_L_XL 0x28
// Constants
#define LSM6DS3_ACCEL_CHIP_ID 0x69
#define LSM6DS3TRC_ACCEL_CHIP_ID 0x6A
#define LSM6DS3_ACCEL_FS_4G (0b10 << 2)
#define LSM6DS3_ACCEL_ODR_52HZ (0b0011 << 4)
#define LSM6DS3_ACCEL_ODR_104HZ (0b0100 << 4)
#define LSM6DS3_ACCEL_INT1_DRDY_XL 0b1
#define LSM6DS3_ACCEL_DRDY_XLDA 0b1
#define LSM6DS3_ACCEL_DRDY_PULSE_MODE (1 << 7)
#define LSM6DS3_ACCEL_IF_INC 0b00000100
#define LSM6DS3_ACCEL_IF_INC_BDU 0b01000100
#define LSM6DS3_ACCEL_XYZ_DEN 0b11100000
#define LSM6DS3_ACCEL_POSITIVE_TEST 0b01
#define LSM6DS3_ACCEL_NEGATIVE_TEST 0b10
#define LSM6DS3_ACCEL_MIN_ST_LIMIT_mg 90.0f
#define LSM6DS3_ACCEL_MAX_ST_LIMIT_mg 1700.0f
class LSM6DS3_Accel : public I2CSensor {
uint8_t get_device_address() {return LSM6DS3_ACCEL_I2C_ADDR;}
cereal::SensorEventData::SensorSource source = cereal::SensorEventData::SensorSource::LSM6DS3;
// self test functions
int self_test(int test_type);
void wait_for_data_ready();
void read_and_avg_data(float* val_st_off);
public:
LSM6DS3_Accel(I2CBus *bus, int gpio_nr = 0, bool shared_gpio = false);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown();
};

View File

@@ -0,0 +1,233 @@
#include "sunnypilot/system/sensord/sensors/lsm6ds3_gyro.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include "common/swaglog.h"
#include "common/timing.h"
#include "common/util.h"
#define DEG2RAD(x) ((x) * M_PI / 180.0)
LSM6DS3_Gyro::LSM6DS3_Gyro(I2CBus *bus, int gpio_nr, bool shared_gpio) :
I2CSensor(bus, gpio_nr, shared_gpio) {}
void LSM6DS3_Gyro::wait_for_data_ready() {
uint8_t drdy = 0;
uint8_t buffer[6];
do {
read_register(LSM6DS3_GYRO_I2C_REG_STAT_REG, &drdy, sizeof(drdy));
drdy &= LSM6DS3_GYRO_DRDY_GDA;
} while (drdy == 0);
read_register(LSM6DS3_GYRO_I2C_REG_OUTX_L_G, buffer, sizeof(buffer));
}
void LSM6DS3_Gyro::read_and_avg_data(float* out_buf) {
uint8_t drdy = 0;
uint8_t buffer[6];
for (int i = 0; i < 5; i++) {
do {
read_register(LSM6DS3_GYRO_I2C_REG_STAT_REG, &drdy, sizeof(drdy));
drdy &= LSM6DS3_GYRO_DRDY_GDA;
} while (drdy == 0);
int len = read_register(LSM6DS3_GYRO_I2C_REG_OUTX_L_G, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
for (int j = 0; j < 3; j++) {
out_buf[j] += (float)read_16_bit(buffer[j*2], buffer[j*2+1]) * 70.0f;
}
}
// calculate the mg average values
for (int i = 0; i < 3; i++) {
out_buf[i] /= 5.0f;
}
}
int LSM6DS3_Gyro::self_test(int test_type) {
float val_st_off[3] = {0};
float val_st_on[3] = {0};
float test_val[3] = {0};
// prepare sensor for self-test
// full scale: 2000dps, ODR: 208Hz
int ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, LSM6DS3_GYRO_ODR_208HZ | LSM6DS3_GYRO_FS_2000dps);
if (ret < 0) {
return ret;
}
// wait for stable output, and discard first values
util::sleep_for(150);
wait_for_data_ready();
read_and_avg_data(val_st_off);
// enable Self Test positive (or negative)
ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL5_C, test_type);
if (ret < 0) {
return ret;
}
// wait for stable output, and discard first values
util::sleep_for(50);
wait_for_data_ready();
read_and_avg_data(val_st_on);
// disable sensor
ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, 0);
if (ret < 0) {
return ret;
}
// disable self test
ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL5_C, 0);
if (ret < 0) {
return ret;
}
// calculate the mg values for self test
for (int i = 0; i < 3; i++) {
test_val[i] = fabs(val_st_on[i] - val_st_off[i]);
}
// verify test result
for (int i = 0; i < 3; i++) {
if ((LSM6DS3_GYRO_MIN_ST_LIMIT_mdps > test_val[i]) ||
(test_val[i] > LSM6DS3_GYRO_MAX_ST_LIMIT_mdps)) {
return -1;
}
}
return ret;
}
int LSM6DS3_Gyro::init() {
uint8_t value = 0;
bool do_self_test = false;
const char* env_lsm_selftest = std::getenv("LSM_SELF_TEST");
if (env_lsm_selftest != nullptr && strncmp(env_lsm_selftest, "1", 1) == 0) {
do_self_test = true;
}
int ret = verify_chip_id(LSM6DS3_GYRO_I2C_REG_ID, {LSM6DS3_GYRO_CHIP_ID, LSM6DS3TRC_GYRO_CHIP_ID});
if (ret == -1) return -1;
if (ret == LSM6DS3TRC_GYRO_CHIP_ID) {
source = cereal::SensorEventData::SensorSource::LSM6DS3TRC;
}
ret = init_gpio();
if (ret < 0) {
goto fail;
}
ret = self_test(LSM6DS3_GYRO_POSITIVE_TEST);
if (ret < 0) {
LOGE("LSM6DS3 gyro positive self-test failed!");
if (do_self_test) goto fail;
}
ret = self_test(LSM6DS3_GYRO_NEGATIVE_TEST);
if (ret < 0) {
LOGE("LSM6DS3 gyro negative self-test failed!");
if (do_self_test) goto fail;
}
// TODO: set scale. Default is +- 250 deg/s
ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, LSM6DS3_GYRO_ODR_104HZ);
if (ret < 0) {
goto fail;
}
ret = set_register(LSM6DS3_GYRO_I2C_REG_DRDY_CFG, LSM6DS3_GYRO_DRDY_PULSE_MODE);
if (ret < 0) {
goto fail;
}
// enable data ready interrupt for gyro on INT1
// (without resetting existing interrupts)
ret = read_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, &value, 1);
if (ret < 0) {
goto fail;
}
value |= LSM6DS3_GYRO_INT1_DRDY_G;
ret = set_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, value);
fail:
return ret;
}
int LSM6DS3_Gyro::shutdown() {
int ret = 0;
// disable data ready interrupt for gyro on INT1
uint8_t value = 0;
ret = read_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, &value, 1);
if (ret < 0) {
goto fail;
}
value &= ~(LSM6DS3_GYRO_INT1_DRDY_G);
ret = set_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, value);
if (ret < 0) {
LOGE("Could not disable lsm6ds3 gyroscope interrupt!");
goto fail;
}
// enable power-down mode
value = 0;
ret = read_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, &value, 1);
if (ret < 0) {
goto fail;
}
value &= 0x0F;
ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, value);
if (ret < 0) {
LOGE("Could not power-down lsm6ds3 gyroscope!");
goto fail;
}
fail:
return ret;
}
bool LSM6DS3_Gyro::get_event(MessageBuilder &msg, uint64_t ts) {
// INT1 shared with accel, check STATUS_REG who triggered
uint8_t status_reg = 0;
read_register(LSM6DS3_GYRO_I2C_REG_STAT_REG, &status_reg, sizeof(status_reg));
if ((status_reg & LSM6DS3_GYRO_DRDY_GDA) == 0) {
return false;
}
uint8_t buffer[6];
int len = read_register(LSM6DS3_GYRO_I2C_REG_OUTX_L_G, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
float scale = 8.75 / 1000.0;
float x = DEG2RAD(read_16_bit(buffer[0], buffer[1]) * scale);
float y = DEG2RAD(read_16_bit(buffer[2], buffer[3]) * scale);
float z = DEG2RAD(read_16_bit(buffer[4], buffer[5]) * scale);
auto event = msg.initEvent().initGyroscope();
event.setSource(source);
event.setVersion(2);
event.setSensor(SENSOR_GYRO_UNCALIBRATED);
event.setType(SENSOR_TYPE_GYROSCOPE_UNCALIBRATED);
event.setTimestamp(ts);
float xyz[] = {y, -x, z};
auto svec = event.initGyroUncalibrated();
svec.setV(xyz);
svec.setStatus(true);
return true;
}

View File

@@ -0,0 +1,45 @@
#pragma once
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
// Address of the chip on the bus
#define LSM6DS3_GYRO_I2C_ADDR 0x6A
// Registers of the chip
#define LSM6DS3_GYRO_I2C_REG_DRDY_CFG 0x0B
#define LSM6DS3_GYRO_I2C_REG_ID 0x0F
#define LSM6DS3_GYRO_I2C_REG_INT1_CTRL 0x0D
#define LSM6DS3_GYRO_I2C_REG_CTRL2_G 0x11
#define LSM6DS3_GYRO_I2C_REG_CTRL5_C 0x14
#define LSM6DS3_GYRO_I2C_REG_STAT_REG 0x1E
#define LSM6DS3_GYRO_I2C_REG_OUTX_L_G 0x22
#define LSM6DS3_GYRO_POSITIVE_TEST (0b01 << 2)
#define LSM6DS3_GYRO_NEGATIVE_TEST (0b11 << 2)
// Constants
#define LSM6DS3_GYRO_CHIP_ID 0x69
#define LSM6DS3TRC_GYRO_CHIP_ID 0x6A
#define LSM6DS3_GYRO_FS_2000dps (0b11 << 2)
#define LSM6DS3_GYRO_ODR_104HZ (0b0100 << 4)
#define LSM6DS3_GYRO_ODR_208HZ (0b0101 << 4)
#define LSM6DS3_GYRO_INT1_DRDY_G 0b10
#define LSM6DS3_GYRO_DRDY_GDA 0b10
#define LSM6DS3_GYRO_DRDY_PULSE_MODE (1 << 7)
#define LSM6DS3_GYRO_MIN_ST_LIMIT_mdps 150000.0f
#define LSM6DS3_GYRO_MAX_ST_LIMIT_mdps 700000.0f
class LSM6DS3_Gyro : public I2CSensor {
uint8_t get_device_address() {return LSM6DS3_GYRO_I2C_ADDR;}
cereal::SensorEventData::SensorSource source = cereal::SensorEventData::SensorSource::LSM6DS3;
// self test functions
int self_test(int test_type);
void wait_for_data_ready();
void read_and_avg_data(float* val_st_off);
public:
LSM6DS3_Gyro(I2CBus *bus, int gpio_nr = 0, bool shared_gpio = false);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown();
};

View File

@@ -0,0 +1,37 @@
#include "sunnypilot/system/sensord/sensors/lsm6ds3_temp.h"
#include <cassert>
#include "common/swaglog.h"
#include "common/timing.h"
LSM6DS3_Temp::LSM6DS3_Temp(I2CBus *bus) : I2CSensor(bus) {}
int LSM6DS3_Temp::init() {
int ret = verify_chip_id(LSM6DS3_TEMP_I2C_REG_ID, {LSM6DS3_TEMP_CHIP_ID, LSM6DS3TRC_TEMP_CHIP_ID});
if (ret == -1) return -1;
if (ret == LSM6DS3TRC_TEMP_CHIP_ID) {
source = cereal::SensorEventData::SensorSource::LSM6DS3TRC;
}
return 0;
}
bool LSM6DS3_Temp::get_event(MessageBuilder &msg, uint64_t ts) {
uint64_t start_time = nanos_since_boot();
uint8_t buffer[2];
int len = read_register(LSM6DS3_TEMP_I2C_REG_OUT_TEMP_L, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
float scale = (source == cereal::SensorEventData::SensorSource::LSM6DS3TRC) ? 256.0f : 16.0f;
float temp = 25.0f + read_16_bit(buffer[0], buffer[1]) / scale;
auto event = msg.initEvent().initTemperatureSensor();
event.setSource(source);
event.setVersion(1);
event.setType(SENSOR_TYPE_AMBIENT_TEMPERATURE);
event.setTimestamp(start_time);
event.setTemperature(temp);
return true;
}

View File

@@ -0,0 +1,26 @@
#pragma once
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
// Address of the chip on the bus
#define LSM6DS3_TEMP_I2C_ADDR 0x6A
// Registers of the chip
#define LSM6DS3_TEMP_I2C_REG_ID 0x0F
#define LSM6DS3_TEMP_I2C_REG_OUT_TEMP_L 0x20
// Constants
#define LSM6DS3_TEMP_CHIP_ID 0x69
#define LSM6DS3TRC_TEMP_CHIP_ID 0x6A
class LSM6DS3_Temp : public I2CSensor {
uint8_t get_device_address() {return LSM6DS3_TEMP_I2C_ADDR;}
cereal::SensorEventData::SensorSource source = cereal::SensorEventData::SensorSource::LSM6DS3;
public:
LSM6DS3_Temp(I2CBus *bus);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown() { return 0; }
};

View File

@@ -0,0 +1,108 @@
#include "sunnypilot/system/sensord/sensors/mmc5603nj_magn.h"
#include <algorithm>
#include <cassert>
#include <vector>
#include "common/swaglog.h"
#include "common/timing.h"
#include "common/util.h"
MMC5603NJ_Magn::MMC5603NJ_Magn(I2CBus *bus) : I2CSensor(bus) {}
int MMC5603NJ_Magn::init() {
int ret = verify_chip_id(MMC5603NJ_I2C_REG_ID, {MMC5603NJ_CHIP_ID});
if (ret == -1) return -1;
// Set ODR to 0
ret = set_register(MMC5603NJ_I2C_REG_ODR, 0);
if (ret < 0) {
goto fail;
}
// Set BW to 0b01 for 1-150 Hz operation
ret = set_register(MMC5603NJ_I2C_REG_INTERNAL_1, 0b01);
if (ret < 0) {
goto fail;
}
fail:
return ret;
}
int MMC5603NJ_Magn::shutdown() {
int ret = 0;
// disable auto reset of measurements
uint8_t value = 0;
ret = read_register(MMC5603NJ_I2C_REG_INTERNAL_0, &value, 1);
if (ret < 0) {
goto fail;
}
value &= ~(MMC5603NJ_CMM_FREQ_EN | MMC5603NJ_AUTO_SR_EN);
ret = set_register(MMC5603NJ_I2C_REG_INTERNAL_0, value);
if (ret < 0) {
goto fail;
}
// set ODR to 0 to leave continuous mode
ret = set_register(MMC5603NJ_I2C_REG_ODR, 0);
if (ret < 0) {
goto fail;
}
return ret;
fail:
LOGE("Could not disable mmc5603nj auto set reset");
return ret;
}
void MMC5603NJ_Magn::start_measurement() {
set_register(MMC5603NJ_I2C_REG_INTERNAL_0, 0b01);
util::sleep_for(5);
}
std::vector<float> MMC5603NJ_Magn::read_measurement() {
int len;
uint8_t buffer[9];
len = read_register(MMC5603NJ_I2C_REG_XOUT0, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
float scale = 1.0 / 16384.0;
float x = (read_20_bit(buffer[6], buffer[1], buffer[0]) * scale) - 32.0;
float y = (read_20_bit(buffer[7], buffer[3], buffer[2]) * scale) - 32.0;
float z = (read_20_bit(buffer[8], buffer[5], buffer[4]) * scale) - 32.0;
std::vector<float> xyz = {x, y, z};
return xyz;
}
bool MMC5603NJ_Magn::get_event(MessageBuilder &msg, uint64_t ts) {
uint64_t start_time = nanos_since_boot();
// SET - RESET cycle
set_register(MMC5603NJ_I2C_REG_INTERNAL_0, MMC5603NJ_SET);
util::sleep_for(5);
MMC5603NJ_Magn::start_measurement();
std::vector<float> xyz = MMC5603NJ_Magn::read_measurement();
set_register(MMC5603NJ_I2C_REG_INTERNAL_0, MMC5603NJ_RESET);
util::sleep_for(5);
MMC5603NJ_Magn::start_measurement();
std::vector<float> reset_xyz = MMC5603NJ_Magn::read_measurement();
auto event = msg.initEvent().initMagnetometer();
event.setSource(cereal::SensorEventData::SensorSource::MMC5603NJ);
event.setVersion(1);
event.setSensor(SENSOR_MAGNETOMETER_UNCALIBRATED);
event.setType(SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED);
event.setTimestamp(start_time);
float vals[] = {xyz[0], xyz[1], xyz[2], reset_xyz[0], reset_xyz[1], reset_xyz[2]};
bool valid = true;
if (std::any_of(std::begin(vals), std::end(vals), [](float val) { return val == -32.0; })) {
valid = false;
}
auto svec = event.initMagneticUncalibrated();
svec.setV(vals);
svec.setStatus(valid);
return true;
}

View File

@@ -0,0 +1,37 @@
#pragma once
#include <vector>
#include "sunnypilot/system/sensord/sensors/i2c_sensor.h"
// Address of the chip on the bus
#define MMC5603NJ_I2C_ADDR 0x30
// Registers of the chip
#define MMC5603NJ_I2C_REG_XOUT0 0x00
#define MMC5603NJ_I2C_REG_ODR 0x1A
#define MMC5603NJ_I2C_REG_INTERNAL_0 0x1B
#define MMC5603NJ_I2C_REG_INTERNAL_1 0x1C
#define MMC5603NJ_I2C_REG_INTERNAL_2 0x1D
#define MMC5603NJ_I2C_REG_ID 0x39
// Constants
#define MMC5603NJ_CHIP_ID 0x10
#define MMC5603NJ_CMM_FREQ_EN (1 << 7)
#define MMC5603NJ_AUTO_SR_EN (1 << 5)
#define MMC5603NJ_CMM_EN (1 << 4)
#define MMC5603NJ_EN_PRD_SET (1 << 3)
#define MMC5603NJ_SET (1 << 3)
#define MMC5603NJ_RESET (1 << 4)
class MMC5603NJ_Magn : public I2CSensor {
private:
uint8_t get_device_address() {return MMC5603NJ_I2C_ADDR;}
void start_measurement();
std::vector<float> read_measurement();
public:
MMC5603NJ_Magn(I2CBus *bus);
int init();
bool get_event(MessageBuilder &msg, uint64_t ts = 0);
int shutdown();
};

View File

@@ -0,0 +1,24 @@
#pragma once
#include "cereal/messaging/messaging.h"
class Sensor {
public:
int gpio_fd = -1;
bool enabled = false;
uint64_t start_ts = 0;
uint64_t init_delay = 500e6; // default dealy 500ms
virtual ~Sensor() {}
virtual int init() = 0;
virtual bool get_event(MessageBuilder &msg, uint64_t ts = 0) = 0;
virtual bool has_interrupt_enabled() = 0;
virtual int shutdown() = 0;
virtual bool is_data_valid(uint64_t current_ts) {
if (start_ts == 0) {
start_ts = current_ts;
}
return (current_ts - start_ts) > init_delay;
}
};

View File

@@ -0,0 +1,179 @@
#include <sys/resource.h>
#include <chrono>
#include <thread>
#include <vector>
#include <map>
#include <poll.h>
#include <linux/gpio.h>
#include "cereal/services.h"
#include "cereal/messaging/messaging.h"
#include "common/i2c.h"
#include "common/ratekeeper.h"
#include "common/swaglog.h"
#include "common/timing.h"
#include "common/util.h"
#include "sunnypilot/system/sensord/sensors/bmx055_accel.h"
#include "sunnypilot/system/sensord/sensors/bmx055_gyro.h"
#include "sunnypilot/system/sensord/sensors/bmx055_magn.h"
#include "sunnypilot/system/sensord/sensors/bmx055_temp.h"
#include "sunnypilot/system/sensord/sensors/constants.h"
#include "sunnypilot/system/sensord/sensors/lsm6ds3_accel.h"
#include "sunnypilot/system/sensord/sensors/lsm6ds3_gyro.h"
#include "sunnypilot/system/sensord/sensors/lsm6ds3_temp.h"
#include "sunnypilot/system/sensord/sensors/mmc5603nj_magn.h"
#define I2C_BUS_IMU 1
ExitHandler do_exit;
void interrupt_loop(std::vector<std::tuple<Sensor *, std::string>> sensors) {
PubMaster pm({"gyroscope", "accelerometer"});
int fd = -1;
for (auto &[sensor, msg_name] : sensors) {
if (sensor->has_interrupt_enabled()) {
fd = sensor->gpio_fd;
break;
}
}
uint64_t offset = nanos_since_epoch() - nanos_since_boot();
struct pollfd fd_list[1] = {0};
fd_list[0].fd = fd;
fd_list[0].events = POLLIN | POLLPRI;
while (!do_exit) {
int err = poll(fd_list, 1, 100);
if (err == -1) {
if (errno == EINTR) {
continue;
}
return;
} else if (err == 0) {
LOGE("poll timed out");
continue;
}
if ((fd_list[0].revents & (POLLIN | POLLPRI)) == 0) {
LOGE("no poll events set");
continue;
}
// Read all events
struct gpioevent_data evdata[16];
err = HANDLE_EINTR(read(fd, evdata, sizeof(evdata)));
if (err < 0 || err % sizeof(*evdata) != 0) {
LOGE("error reading event data %d", err);
continue;
}
uint64_t cur_offset = nanos_since_epoch() - nanos_since_boot();
uint64_t diff = cur_offset > offset ? cur_offset - offset : offset - cur_offset;
if (diff > 10*1e6) { // 10ms
LOGW("time jumped: %lu %lu", cur_offset, offset);
offset = cur_offset;
// we don't have a valid timestamp since the
// time jumped, so throw out this measurement.
continue;
}
int num_events = err / sizeof(*evdata);
uint64_t ts = evdata[num_events - 1].timestamp - cur_offset;
for (auto &[sensor, msg_name] : sensors) {
if (!sensor->has_interrupt_enabled()) {
continue;
}
MessageBuilder msg;
if (!sensor->get_event(msg, ts)) {
continue;
}
if (!sensor->is_data_valid(ts)) {
continue;
}
pm.send(msg_name.c_str(), msg);
}
}
}
void polling_loop(Sensor *sensor, std::string msg_name) {
PubMaster pm({msg_name.c_str()});
RateKeeper rk(msg_name, services.at(msg_name).frequency);
while (!do_exit) {
MessageBuilder msg;
if (sensor->get_event(msg) && sensor->is_data_valid(nanos_since_boot())) {
pm.send(msg_name.c_str(), msg);
}
rk.keepTime();
}
}
int sensor_loop(I2CBus *i2c_bus_imu) {
// Sensor init
std::vector<std::tuple<Sensor *, std::string>> sensors_init = {
{new BMX055_Accel(i2c_bus_imu), "accelerometer2"},
{new BMX055_Gyro(i2c_bus_imu), "gyroscope2"},
{new BMX055_Magn(i2c_bus_imu), "magnetometer"},
{new BMX055_Temp(i2c_bus_imu), "temperatureSensor2"},
{new LSM6DS3_Accel(i2c_bus_imu, GPIO_LSM_INT), "accelerometer"},
{new LSM6DS3_Gyro(i2c_bus_imu, GPIO_LSM_INT, true), "gyroscope"},
{new LSM6DS3_Temp(i2c_bus_imu), "temperatureSensor"},
{new MMC5603NJ_Magn(i2c_bus_imu), "magnetometer"},
};
// Initialize sensors
std::vector<std::thread> threads;
for (auto &[sensor, msg_name] : sensors_init) {
int err = sensor->init();
if (err < 0) {
continue;
}
if (!sensor->has_interrupt_enabled()) {
threads.emplace_back(polling_loop, sensor, msg_name);
}
}
// increase interrupt quality by pinning interrupt and process to core 1
setpriority(PRIO_PROCESS, 0, -18);
util::set_core_affinity({1});
// TODO: get the IRQ number from gpiochip
std::string irq_path = "/proc/irq/336/smp_affinity_list";
if (!util::file_exists(irq_path)) {
irq_path = "/proc/irq/335/smp_affinity_list";
}
std::system(util::string_format("sudo su -c 'echo 1 > %s'", irq_path.c_str()).c_str());
// thread for reading events via interrupts
threads.emplace_back(&interrupt_loop, std::ref(sensors_init));
// wait for all threads to finish
for (auto &t : threads) {
t.join();
}
for (auto &[sensor, msg_name] : sensors_init) {
sensor->shutdown();
delete sensor;
}
return 0;
}
int main(int argc, char *argv[]) {
try {
auto i2c_bus_imu = std::make_unique<I2CBus>(I2C_BUS_IMU);
return sensor_loop(i2c_bus_imu.get());
} catch (std::exception &e) {
LOGE("I2CBus init failed");
return -1;
}
}

View File

@@ -0,0 +1,251 @@
import os
import pytest
import time
import numpy as np
from collections import namedtuple, defaultdict
import cereal.messaging as messaging
from cereal import log
from cereal.services import SERVICE_LIST
from openpilot.common.gpio import get_irqs_for_action
from openpilot.common.timeout import Timeout
from openpilot.system.hardware import HARDWARE
from openpilot.system.manager.process_config import managed_processes
BMX = {
('bmx055', 'acceleration'),
('bmx055', 'gyroUncalibrated'),
('bmx055', 'magneticUncalibrated'),
('bmx055', 'temperature'),
}
LSM = {
('lsm6ds3', 'acceleration'),
('lsm6ds3', 'gyroUncalibrated'),
('lsm6ds3', 'temperature'),
}
LSM_C = {(x[0]+'trc', x[1]) for x in LSM}
MMC = {
('mmc5603nj', 'magneticUncalibrated'),
}
SENSOR_CONFIGURATIONS: list[set] = [
BMX | LSM,
MMC | LSM,
BMX | LSM_C,
MMC| LSM_C,
]
if HARDWARE.get_device_type() == "mici":
SENSOR_CONFIGURATIONS = [
LSM,
LSM_C,
]
Sensor = log.SensorEventData.SensorSource
SensorConfig = namedtuple('SensorConfig', ['type', 'sanity_min', 'sanity_max'])
ALL_SENSORS = {
Sensor.lsm6ds3: {
SensorConfig("acceleration", 5, 15),
SensorConfig("gyroUncalibrated", 0, .2),
SensorConfig("temperature", 0, 60),
},
Sensor.lsm6ds3trc: {
SensorConfig("acceleration", 5, 15),
SensorConfig("gyroUncalibrated", 0, .2),
SensorConfig("temperature", 0, 60),
},
Sensor.bmx055: {
SensorConfig("acceleration", 5, 15),
SensorConfig("gyroUncalibrated", 0, .2),
SensorConfig("magneticUncalibrated", 0, 300),
SensorConfig("temperature", 0, 60),
},
Sensor.mmc5603nj: {
SensorConfig("magneticUncalibrated", 0, 300),
}
}
def get_irq_count(irq: int):
with open(f"/sys/kernel/irq/{irq}/per_cpu_count") as f:
per_cpu = map(int, f.read().split(","))
return sum(per_cpu)
def read_sensor_events(duration_sec):
sensor_types = ['accelerometer', 'gyroscope', 'magnetometer', 'accelerometer2',
'gyroscope2', 'temperatureSensor', 'temperatureSensor2']
socks = {}
poller = messaging.Poller()
events = defaultdict(list)
for stype in sensor_types:
socks[stype] = messaging.sub_sock(stype, poller=poller, timeout=100)
# wait for sensors to come up
with Timeout(int(os.environ.get("SENSOR_WAIT", "5")), "sensors didn't come up"):
while len(poller.poll(250)) == 0:
pass
time.sleep(1)
for s in socks.values():
messaging.drain_sock_raw(s)
st = time.monotonic()
while time.monotonic() - st < duration_sec:
for s in socks:
events[s] += messaging.drain_sock(socks[s])
time.sleep(0.1)
assert sum(map(len, events.values())) != 0, "No sensor events collected!"
return {k: v for k, v in events.items() if len(v) > 0}
@pytest.mark.tici
class TestSensord:
@classmethod
def setup_class(cls):
# enable LSM self test
os.environ["LSM_SELF_TEST"] = "1"
# read initial sensor values every test case can use
os.system("pkill -f \\\\./sensord")
try:
managed_processes["sensord"].start()
cls.sample_secs = int(os.getenv("SAMPLE_SECS", "10"))
cls.events = read_sensor_events(cls.sample_secs)
# determine sensord's irq
cls.sensord_irq = get_irqs_for_action("sensord")[0]
finally:
# teardown won't run if this doesn't succeed
managed_processes["sensord"].stop()
@classmethod
def teardown_class(cls):
managed_processes["sensord"].stop()
def teardown_method(self):
managed_processes["sensord"].stop()
def test_sensors_present(self):
# verify correct sensors configuration
seen = set()
for etype in self.events:
for measurement in self.events[etype]:
m = getattr(measurement, measurement.which())
seen.add((str(m.source), m.which()))
assert seen in SENSOR_CONFIGURATIONS
def test_lsm6ds3_timing(self, subtests):
# verify measurements are sampled and published at 104Hz
sensor_t = {
1: [], # accel
5: [], # gyro
}
for measurement in self.events['accelerometer']:
m = getattr(measurement, measurement.which())
sensor_t[m.sensor].append(m.timestamp)
for measurement in self.events['gyroscope']:
m = getattr(measurement, measurement.which())
sensor_t[m.sensor].append(m.timestamp)
for s, vals in sensor_t.items():
with subtests.test(sensor=s):
assert len(vals) > 0
tdiffs = np.diff(vals) / 1e6 # millis
high_delay_diffs = list(filter(lambda d: d >= 20., tdiffs))
assert len(high_delay_diffs) < 15, f"Too many large diffs: {high_delay_diffs}"
avg_diff = sum(tdiffs)/len(tdiffs)
avg_freq = 1. / (avg_diff * 1e-3)
assert 92. < avg_freq < 114., f"avg freq {avg_freq}Hz wrong, expected 104Hz"
stddev = np.std(tdiffs)
assert stddev < 2.0, f"Standard-dev to big {stddev}"
def test_sensor_frequency(self, subtests):
for s, msgs in self.events.items():
with subtests.test(sensor=s):
freq = len(msgs) / self.sample_secs
ef = SERVICE_LIST[s].frequency
assert ef*0.85 <= freq <= ef*1.15
def test_logmonottime_timestamp_diff(self):
# ensure diff between the message logMonotime and sample timestamp is small
tdiffs = list()
for etype in self.events:
for measurement in self.events[etype]:
m = getattr(measurement, measurement.which())
# check if gyro and accel timestamps are before logMonoTime
if str(m.source).startswith("lsm6ds3") and m.which() != 'temperature':
err_msg = f"Timestamp after logMonoTime: {m.timestamp} > {measurement.logMonoTime}"
assert m.timestamp < measurement.logMonoTime, err_msg
# negative values might occur, as non interrupt packages created
# before the sensor is read
tdiffs.append(abs(measurement.logMonoTime - m.timestamp) / 1e6)
# some sensors have a read procedure that will introduce an expected diff on the order of 20ms
high_delay_diffs = set(filter(lambda d: d >= 25., tdiffs))
assert len(high_delay_diffs) < 20, f"Too many measurements published: {high_delay_diffs}"
avg_diff = round(sum(tdiffs)/len(tdiffs), 4)
assert avg_diff < 4, f"Avg packet diff: {avg_diff:.1f}ms"
def test_sensor_values(self):
sensor_values = dict()
for etype in self.events:
for measurement in self.events[etype]:
m = getattr(measurement, measurement.which())
key = (m.source.raw, m.which())
values = getattr(m, m.which())
if hasattr(values, 'v'):
values = values.v
values = np.atleast_1d(values)
if key in sensor_values:
sensor_values[key].append(values)
else:
sensor_values[key] = [values]
# Sanity check sensor values
for sensor, stype in sensor_values:
for s in ALL_SENSORS[sensor]:
if s.type != stype:
continue
key = (sensor, s.type)
mean_norm = np.mean(np.linalg.norm(sensor_values[key], axis=1))
err_msg = f"Sensor '{sensor} {s.type}' failed sanity checks {mean_norm} is not between {s.sanity_min} and {s.sanity_max}"
assert s.sanity_min <= mean_norm <= s.sanity_max, err_msg
def test_sensor_verify_no_interrupts_after_stop(self):
managed_processes["sensord"].start()
time.sleep(3)
# read /proc/interrupts to verify interrupts are received
state_one = get_irq_count(self.sensord_irq)
time.sleep(1)
state_two = get_irq_count(self.sensord_irq)
error_msg = f"no interrupts received after sensord start!\n{state_one} {state_two}"
assert state_one != state_two, error_msg
managed_processes["sensord"].stop()
time.sleep(1)
# read /proc/interrupts to verify no more interrupts are received
state_one = get_irq_count(self.sensord_irq)
time.sleep(1)
state_two = get_irq_count(self.sensord_irq)
assert state_one == state_two, "Interrupts received after sensord stop!"

View File

@@ -0,0 +1,48 @@
#!/usr/bin/env python3
import time
import atexit
from cereal import messaging
from openpilot.system.manager.process_config import managed_processes
TIMEOUT = 10*60
def kill():
for proc in ['ubloxd', 'pigeond']:
managed_processes[proc].stop(retry=True, block=True)
if __name__ == "__main__":
# start ubloxd
managed_processes['ubloxd'].start()
atexit.register(kill)
sm = messaging.SubMaster(['ubloxGnss'])
times = []
for i in range(20):
# start pigeond
st = time.monotonic()
managed_processes['pigeond'].start()
# wait for a >4 satellite fix
while True:
sm.update(0)
msg = sm['ubloxGnss']
if msg.which() == 'measurementReport' and sm.updated["ubloxGnss"]:
report = msg.measurementReport
if report.numMeas > 4:
times.append(time.monotonic() - st)
print(f"\033[94m{i}: Got a fix in {round(times[-1], 2)} seconds\033[0m")
break
if time.monotonic() - st > TIMEOUT:
raise TimeoutError("\033[91mFailed to get a fix in {TIMEOUT} seconds!\033[0m")
time.sleep(0.1)
# stop pigeond
managed_processes['pigeond'].stop(retry=True, block=True)
time.sleep(20)
print(f"\033[92mAverage TTFF: {round(sum(times) / len(times), 2)}s\033[0m")

View File

@@ -173,6 +173,9 @@ procs += [
# mapd
NativeProcess("mapd", Paths.mapd_root(), ["bash", "-c", f"{MAPD_PATH} > /dev/null 2>&1"], mapd_ready),
PythonProcess("mapd_manager", "sunnypilot.mapd.mapd_manager", always_run),
# locationd
NativeProcess("locationd_llk", "sunnypilot/selfdrive/locationd", ["./locationd"], only_onroad),
]
if os.path.exists("./github_runner.sh"):