mirror of
https://github.com/sunnypilot/sunnypilot.git
synced 2026-02-18 20:03:53 +08:00
@@ -32,7 +32,7 @@ class CarController():
|
||||
|
||||
if (frame % 3) == 0:
|
||||
|
||||
curvature = self.vehicle_model.calc_curvature(actuators.steeringAngleDeg*math.pi/180., CS.out.vEgo)
|
||||
curvature = self.vehicle_model.calc_curvature(math.radians(actuators.steeringAngleDeg), CS.out.vEgo, 0.0)
|
||||
|
||||
# The use of the toggle below is handy for trying out the various LKAS modes
|
||||
if TOGGLE_DEBUG:
|
||||
|
||||
@@ -350,7 +350,6 @@ class CarInterface(CarInterfaceBase):
|
||||
ret = self.CS.update(self.cp, self.cp_cam, self.cp_body)
|
||||
|
||||
ret.canValid = self.cp.can_valid and self.cp_cam.can_valid and (self.cp_body is None or self.cp_body.can_valid)
|
||||
ret.yawRate = self.VM.yaw_rate(ret.steeringAngleDeg * CV.DEG_TO_RAD, ret.vEgo)
|
||||
|
||||
buttonEvents = []
|
||||
|
||||
|
||||
@@ -631,8 +631,9 @@ class Controls:
|
||||
|
||||
# Curvature & Steering angle
|
||||
params = self.sm['liveParameters']
|
||||
steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetAverageDeg)
|
||||
curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo)
|
||||
|
||||
steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetDeg)
|
||||
curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo, params.roll)
|
||||
|
||||
# controlsState
|
||||
dat = messaging.new_message('controlsState')
|
||||
|
||||
@@ -18,7 +18,7 @@ class LatControlAngle():
|
||||
angle_steers_des = float(CS.steeringAngleDeg)
|
||||
else:
|
||||
angle_log.active = True
|
||||
angle_steers_des = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo))
|
||||
angle_steers_des = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
|
||||
angle_steers_des += params.angleOffsetDeg
|
||||
|
||||
angle_log.saturated = False
|
||||
|
||||
@@ -93,11 +93,11 @@ class LatControlINDI():
|
||||
indi_log.steeringRateDeg = math.degrees(self.x[1])
|
||||
indi_log.steeringAccelDeg = math.degrees(self.x[2])
|
||||
|
||||
steers_des = VM.get_steer_from_curvature(-curvature, CS.vEgo)
|
||||
steers_des = VM.get_steer_from_curvature(-curvature, CS.vEgo, params.roll)
|
||||
steers_des += math.radians(params.angleOffsetDeg)
|
||||
indi_log.steeringAngleDesiredDeg = math.degrees(steers_des)
|
||||
|
||||
rate_des = VM.get_steer_from_curvature(-curvature_rate, CS.vEgo)
|
||||
rate_des = VM.get_steer_from_curvature(-curvature_rate, CS.vEgo, 0)
|
||||
indi_log.steeringRateDesiredDeg = math.degrees(rate_des)
|
||||
|
||||
if CS.vEgo < 0.3 or not active:
|
||||
|
||||
@@ -53,7 +53,7 @@ class LatControlLQR():
|
||||
# Subtract offset. Zero angle should correspond to zero torque
|
||||
steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg
|
||||
|
||||
desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo))
|
||||
desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
|
||||
|
||||
instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg
|
||||
desired_angle += instant_offset # Only add offset that originates from vehicle model errors
|
||||
|
||||
@@ -21,7 +21,7 @@ class LatControlPID():
|
||||
pid_log.steeringAngleDeg = float(CS.steeringAngleDeg)
|
||||
pid_log.steeringRateDeg = float(CS.steeringRateDeg)
|
||||
|
||||
angle_steers_des_no_offset = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo))
|
||||
angle_steers_des_no_offset = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
|
||||
angle_steers_des = angle_steers_des_no_offset + params.angleOffsetDeg
|
||||
|
||||
pid_log.steeringAngleDesiredDeg = angle_steers_des
|
||||
|
||||
70
selfdrive/controls/lib/tests/test_vehicle_model.py
Executable file
70
selfdrive/controls/lib/tests/test_vehicle_model.py
Executable file
@@ -0,0 +1,70 @@
|
||||
#!/usr/bin/env python3
|
||||
import math
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from control import StateSpace
|
||||
|
||||
from selfdrive.car.honda.interface import CarInterface
|
||||
from selfdrive.car.honda.values import CAR
|
||||
from selfdrive.controls.lib.vehicle_model import VehicleModel, dyn_ss_sol, create_dyn_state_matrices
|
||||
|
||||
|
||||
class TestVehicleModel(unittest.TestCase):
|
||||
def setUp(self):
|
||||
CP = CarInterface.get_params(CAR.CIVIC)
|
||||
self.VM = VehicleModel(CP)
|
||||
|
||||
def test_round_trip_yaw_rate(self):
|
||||
# TODO: fix VM to work at zero speed
|
||||
for u in np.linspace(1, 30, num=10):
|
||||
for roll in np.linspace(math.radians(-20), math.radians(20), num=11):
|
||||
for sa in np.linspace(math.radians(-20), math.radians(20), num=11):
|
||||
yr = self.VM.yaw_rate(sa, u, roll)
|
||||
new_sa = self.VM.get_steer_from_yaw_rate(yr, u, roll)
|
||||
|
||||
self.assertAlmostEqual(sa, new_sa)
|
||||
|
||||
def test_dyn_ss_sol_against_yaw_rate(self):
|
||||
"""Verify that the yaw_rate helper function matches the results
|
||||
from the state space model."""
|
||||
|
||||
for roll in np.linspace(math.radians(-20), math.radians(20), num=11):
|
||||
for u in np.linspace(1, 30, num=10):
|
||||
for sa in np.linspace(math.radians(-20), math.radians(20), num=11):
|
||||
|
||||
# Compute yaw rate based on state space model
|
||||
_, yr1 = dyn_ss_sol(sa, u, roll, self.VM)
|
||||
|
||||
# Compute yaw rate using direct computations
|
||||
yr2 = self.VM.yaw_rate(sa, u, roll)
|
||||
self.assertAlmostEqual(float(yr1), yr2)
|
||||
|
||||
def test_syn_ss_sol_simulate(self):
|
||||
"""Verifies that dyn_ss_sol mathes a simulation"""
|
||||
|
||||
for roll in np.linspace(math.radians(-20), math.radians(20), num=11):
|
||||
for u in np.linspace(1, 30, num=10):
|
||||
A, B = create_dyn_state_matrices(u, self.VM)
|
||||
|
||||
# Convert to discrete time system
|
||||
ss = StateSpace(A, B, np.eye(2), np.zeros((2, 2)))
|
||||
ss = ss.sample(0.01)
|
||||
|
||||
for sa in np.linspace(math.radians(-20), math.radians(20), num=11):
|
||||
inp = np.array([[sa], [roll]])
|
||||
|
||||
# Simulate for 1 second
|
||||
x1 = np.zeros((2, 1))
|
||||
for _ in range(100):
|
||||
x1 = ss.A @ x1 + ss.B @ inp
|
||||
|
||||
# Compute steady state solution directly
|
||||
x2 = dyn_ss_sol(sa, u, roll, self.VM)
|
||||
|
||||
np.testing.assert_almost_equal(x1, x2, decimal=3)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@@ -5,7 +5,7 @@ Dynamic bicycle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani
|
||||
The state is x = [v, r]^T
|
||||
with v lateral speed [m/s], and r rotational speed [rad/s]
|
||||
|
||||
The input u is the steering angle [rad]
|
||||
The input u is the steering angle [rad], and roll [rad]
|
||||
|
||||
The system is defined by
|
||||
x_dot = A*x + B*u
|
||||
@@ -19,6 +19,9 @@ from numpy.linalg import solve
|
||||
|
||||
from cereal import car
|
||||
|
||||
ACCELERATION_DUE_TO_GRAVITY = 9.8
|
||||
|
||||
|
||||
class VehicleModel:
|
||||
def __init__(self, CP: car.CarParams):
|
||||
"""
|
||||
@@ -43,7 +46,7 @@ class VehicleModel:
|
||||
self.cR = stiffness_factor * self.cR_orig
|
||||
self.sR = steer_ratio
|
||||
|
||||
def steady_state_sol(self, sa: float, u: float) -> np.ndarray:
|
||||
def steady_state_sol(self, sa: float, u: float, roll: float) -> np.ndarray:
|
||||
"""Returns the steady state solution.
|
||||
|
||||
If the speed is too low we can't use the dynamic model (tire slip is undefined),
|
||||
@@ -52,26 +55,28 @@ class VehicleModel:
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution (lateral speed, rotational speed)
|
||||
"""
|
||||
if u > 0.1:
|
||||
return dyn_ss_sol(sa, u, self)
|
||||
return dyn_ss_sol(sa, u, roll, self)
|
||||
else:
|
||||
return kin_ss_sol(sa, u, self)
|
||||
|
||||
def calc_curvature(self, sa: float, u: float) -> float:
|
||||
def calc_curvature(self, sa: float, u: float, roll: float) -> float:
|
||||
"""Returns the curvature. Multiplied by the speed this will give the yaw rate.
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Curvature factor [1/m]
|
||||
"""
|
||||
return self.curvature_factor(u) * sa / self.sR
|
||||
return (self.curvature_factor(u) * sa / self.sR) + self.roll_compensation(roll, u)
|
||||
|
||||
def curvature_factor(self, u: float) -> float:
|
||||
"""Returns the curvature factor.
|
||||
@@ -86,43 +91,63 @@ class VehicleModel:
|
||||
sf = calc_slip_factor(self)
|
||||
return (1. - self.chi) / (1. - sf * u**2) / self.l
|
||||
|
||||
def get_steer_from_curvature(self, curv: float, u: float) -> float:
|
||||
def get_steer_from_curvature(self, curv: float, u: float, roll: float) -> float:
|
||||
"""Calculates the required steering wheel angle for a given curvature
|
||||
|
||||
Args:
|
||||
curv: Desired curvature [1/m]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Steering wheel angle [rad]
|
||||
"""
|
||||
|
||||
return curv * self.sR * 1.0 / self.curvature_factor(u)
|
||||
return (curv - self.roll_compensation(roll, u)) * self.sR * 1.0 / self.curvature_factor(u)
|
||||
|
||||
def get_steer_from_yaw_rate(self, yaw_rate: float, u: float) -> float:
|
||||
def roll_compensation(self, roll: float, u: float) -> float:
|
||||
"""Calculates the roll-compensation to curvature
|
||||
|
||||
Args:
|
||||
roll: Road Roll [rad]
|
||||
u: Speed [m/s]
|
||||
|
||||
Returns:
|
||||
Roll compensation curvature [rad]
|
||||
"""
|
||||
sf = calc_slip_factor(self)
|
||||
|
||||
if abs(sf) < 1e-6:
|
||||
return 0
|
||||
else:
|
||||
return (ACCELERATION_DUE_TO_GRAVITY * roll) / ((1 / sf) - u**2)
|
||||
|
||||
def get_steer_from_yaw_rate(self, yaw_rate: float, u: float, roll: float) -> float:
|
||||
"""Calculates the required steering wheel angle for a given yaw_rate
|
||||
|
||||
Args:
|
||||
yaw_rate: Desired yaw rate [rad/s]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Steering wheel angle [rad]
|
||||
"""
|
||||
curv = yaw_rate / u
|
||||
return self.get_steer_from_curvature(curv, u)
|
||||
return self.get_steer_from_curvature(curv, u, roll)
|
||||
|
||||
def yaw_rate(self, sa: float, u: float) -> float:
|
||||
def yaw_rate(self, sa: float, u: float, roll: float) -> float:
|
||||
"""Calculate yaw rate
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Yaw rate [rad/s]
|
||||
"""
|
||||
return self.calc_curvature(sa, u) * u
|
||||
return self.calc_curvature(sa, u, roll) * u
|
||||
|
||||
|
||||
def kin_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray:
|
||||
@@ -152,7 +177,7 @@ def create_dyn_state_matrices(u: float, VM: VehicleModel) -> Tuple[np.ndarray, n
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
A tuple with the 2x2 A matrix, and 2x1 B matrix
|
||||
A tuple with the 2x2 A matrix, and 2x2 B matrix
|
||||
|
||||
Parameters in the vehicle model:
|
||||
cF: Tire stiffness Front [N/rad]
|
||||
@@ -165,30 +190,38 @@ def create_dyn_state_matrices(u: float, VM: VehicleModel) -> Tuple[np.ndarray, n
|
||||
chi: Steer ratio rear [-]
|
||||
"""
|
||||
A = np.zeros((2, 2))
|
||||
B = np.zeros((2, 1))
|
||||
B = np.zeros((2, 2))
|
||||
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
|
||||
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
|
||||
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
|
||||
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
|
||||
|
||||
# Steering input
|
||||
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
|
||||
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
|
||||
|
||||
# Roll input
|
||||
B[0, 1] = -ACCELERATION_DUE_TO_GRAVITY
|
||||
|
||||
return A, B
|
||||
|
||||
|
||||
def dyn_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray:
|
||||
def dyn_ss_sol(sa: float, u: float, roll: float, VM: VehicleModel) -> np.ndarray:
|
||||
"""Calculate the steady state solution when x_dot = 0,
|
||||
Ax + Bu = 0 => x = -A^{-1} B u
|
||||
|
||||
Args:
|
||||
sa: Steering angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution
|
||||
"""
|
||||
A, B = create_dyn_state_matrices(u, VM)
|
||||
return -solve(A, B) * sa
|
||||
inp = np.array([[sa], [roll]])
|
||||
return -solve(A, B) @ inp
|
||||
|
||||
|
||||
def calc_slip_factor(VM):
|
||||
|
||||
@@ -5,6 +5,7 @@ from typing import Any, Dict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
|
||||
from selfdrive.locationd.models.constants import ObservationKind
|
||||
from selfdrive.swaglog import cloudlog
|
||||
|
||||
@@ -37,6 +38,7 @@ class States():
|
||||
VELOCITY = _slice(2) # (x, y) [m/s]
|
||||
YAW_RATE = _slice(1) # [rad/s]
|
||||
STEER_ANGLE = _slice(1) # [rad]
|
||||
ROAD_ROLL = _slice(1) # [rad]
|
||||
|
||||
|
||||
class CarKalman(KalmanFilter):
|
||||
@@ -51,6 +53,7 @@ class CarKalman(KalmanFilter):
|
||||
10.0, 0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
])
|
||||
|
||||
# process noise
|
||||
@@ -63,12 +66,14 @@ class CarKalman(KalmanFilter):
|
||||
.1**2, .01**2,
|
||||
math.radians(0.1)**2,
|
||||
math.radians(0.1)**2,
|
||||
math.radians(1)**2,
|
||||
])
|
||||
P_initial = Q.copy()
|
||||
|
||||
obs_noise: Dict[int, Any] = {
|
||||
ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.01)**2),
|
||||
ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(10.0)**2),
|
||||
ObservationKind.ROAD_ROLL: np.atleast_2d(math.radians(1.0)**2),
|
||||
ObservationKind.STEER_RATIO: np.atleast_2d(5.0**2),
|
||||
ObservationKind.STIFFNESS: np.atleast_2d(5.0**2),
|
||||
ObservationKind.ROAD_FRAME_X_SPEED: np.atleast_2d(0.1**2),
|
||||
@@ -87,7 +92,7 @@ class CarKalman(KalmanFilter):
|
||||
def generate_code(generated_dir):
|
||||
dim_state = CarKalman.initial_x.shape[0]
|
||||
name = CarKalman.name
|
||||
|
||||
|
||||
# vehicle models comes from The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars
|
||||
# Model used is in 6.15 with formula from 6.198
|
||||
|
||||
@@ -106,6 +111,7 @@ class CarKalman(KalmanFilter):
|
||||
cF, cR = x * cF_orig, x * cR_orig
|
||||
angle_offset = state[States.ANGLE_OFFSET, :][0, 0]
|
||||
angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0]
|
||||
theta = state[States.ROAD_ROLL, :][0, 0]
|
||||
sa = state[States.STEER_ANGLE, :][0, 0]
|
||||
|
||||
sR = state[States.STEER_RATIO, :][0, 0]
|
||||
@@ -122,8 +128,12 @@ class CarKalman(KalmanFilter):
|
||||
B[0, 0] = cF / m / sR
|
||||
B[1, 0] = (cF * aF) / j / sR
|
||||
|
||||
C = sp.Matrix(np.zeros((2, 1)))
|
||||
C[0, 0] = ACCELERATION_DUE_TO_GRAVITY
|
||||
C[1, 0] = 0
|
||||
|
||||
x = sp.Matrix([v, r]) # lateral velocity, yaw rate
|
||||
x_dot = A * x + B * (sa - angle_offset - angle_offset_fast)
|
||||
x_dot = A * x + B * (sa - angle_offset - angle_offset_fast) - C * theta
|
||||
|
||||
dt = sp.Symbol('dt')
|
||||
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
|
||||
@@ -145,11 +155,12 @@ class CarKalman(KalmanFilter):
|
||||
[sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None],
|
||||
[sp.Matrix([sR]), ObservationKind.STEER_RATIO, None],
|
||||
[sp.Matrix([x]), ObservationKind.STIFFNESS, None],
|
||||
[sp.Matrix([theta]), ObservationKind.ROAD_ROLL, None],
|
||||
]
|
||||
|
||||
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, global_vars=global_vars)
|
||||
|
||||
def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0): # pylint: disable=super-init-not-called
|
||||
def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0, P_initial=None): # pylint: disable=super-init-not-called
|
||||
dim_state = self.initial_x.shape[0]
|
||||
dim_state_err = self.P_initial.shape[0]
|
||||
x_init = self.initial_x
|
||||
@@ -157,6 +168,8 @@ class CarKalman(KalmanFilter):
|
||||
x_init[States.STIFFNESS] = stiffness_factor
|
||||
x_init[States.ANGLE_OFFSET] = angle_offset
|
||||
|
||||
if P_initial is not None:
|
||||
self.P_initial = P_initial
|
||||
# init filter
|
||||
self.filter = EKF_sym(generated_dir, self.name, self.Q, self.initial_x, self.P_initial, dim_state, dim_state_err, global_vars=self.global_vars, logger=cloudlog)
|
||||
|
||||
|
||||
@@ -38,6 +38,7 @@ class ObservationKind:
|
||||
STIFFNESS = 28 # [-]
|
||||
STEER_RATIO = 29 # [-]
|
||||
ROAD_FRAME_X_SPEED = 30 # (x) [m/s]
|
||||
ROAD_ROLL = 31 # [rad]
|
||||
|
||||
names = [
|
||||
'Unknown',
|
||||
@@ -69,6 +70,8 @@ class ObservationKind:
|
||||
'Fast Angle Offset',
|
||||
'Stiffness',
|
||||
'Steer Ratio',
|
||||
'Road Frame x speed',
|
||||
'Road Roll',
|
||||
]
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -16,10 +16,12 @@ from selfdrive.swaglog import cloudlog
|
||||
|
||||
|
||||
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
|
||||
ROLL_MAX_DELTA = np.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
|
||||
ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10)
|
||||
|
||||
class ParamsLearner:
|
||||
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset):
|
||||
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset)
|
||||
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None):
|
||||
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial)
|
||||
|
||||
self.kf.filter.set_global("mass", CP.mass)
|
||||
self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
|
||||
@@ -30,9 +32,10 @@ class ParamsLearner:
|
||||
|
||||
self.active = False
|
||||
|
||||
self.speed = 0
|
||||
self.speed = 0.0
|
||||
self.roll = 0.0
|
||||
self.steering_pressed = False
|
||||
self.steering_angle = 0
|
||||
self.steering_angle = 0.0
|
||||
|
||||
self.valid = True
|
||||
|
||||
@@ -41,16 +44,34 @@ class ParamsLearner:
|
||||
yaw_rate = msg.angularVelocityCalibrated.value[2]
|
||||
yaw_rate_std = msg.angularVelocityCalibrated.std[2]
|
||||
|
||||
localizer_roll = msg.orientationNED.value[0]
|
||||
roll_valid = msg.orientationNED.valid and ROLL_MIN < localizer_roll < ROLL_MAX
|
||||
if roll_valid:
|
||||
roll = localizer_roll
|
||||
roll_std = np.radians(1.0)
|
||||
else:
|
||||
# This is done to bound the road roll estimate when localizer values are invalid
|
||||
roll = 0.0
|
||||
roll_std = np.radians(10.0)
|
||||
self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
|
||||
|
||||
yaw_rate_valid = msg.angularVelocityCalibrated.valid
|
||||
yaw_rate_valid = yaw_rate_valid and 0 < yaw_rate_std < 10 # rad/s
|
||||
yaw_rate_valid = yaw_rate_valid and abs(yaw_rate) < 1 # rad/s
|
||||
|
||||
if self.active:
|
||||
if msg.inputsOK and msg.posenetOK and yaw_rate_valid:
|
||||
if msg.inputsOK and msg.posenetOK:
|
||||
|
||||
if yaw_rate_valid:
|
||||
self.kf.predict_and_observe(t,
|
||||
ObservationKind.ROAD_FRAME_YAW_RATE,
|
||||
np.array([[-yaw_rate]]),
|
||||
np.array([np.atleast_2d(yaw_rate_std**2)]))
|
||||
|
||||
self.kf.predict_and_observe(t,
|
||||
ObservationKind.ROAD_FRAME_YAW_RATE,
|
||||
np.array([[-yaw_rate]]),
|
||||
np.array([np.atleast_2d(yaw_rate_std**2)]))
|
||||
ObservationKind.ROAD_ROLL,
|
||||
np.array([[self.roll]]),
|
||||
np.array([np.atleast_2d(roll_std**2)]))
|
||||
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
|
||||
|
||||
elif which == 'carState':
|
||||
@@ -152,6 +173,7 @@ def main(sm=None, pm=None):
|
||||
msg.liveParameters.sensorValid = True
|
||||
msg.liveParameters.steerRatio = float(x[States.STEER_RATIO])
|
||||
msg.liveParameters.stiffnessFactor = float(x[States.STIFFNESS])
|
||||
msg.liveParameters.roll = float(x[States.ROAD_ROLL])
|
||||
msg.liveParameters.angleOffsetAverageDeg = angle_offset_average
|
||||
msg.liveParameters.angleOffsetDeg = angle_offset
|
||||
msg.liveParameters.valid = all((
|
||||
|
||||
@@ -1 +1 @@
|
||||
8118420b292f4c67ce7e196fc2121571da330e65
|
||||
80430e515ea7ca44f2c73f047692d357856e74c1
|
||||
Reference in New Issue
Block a user