mirror of
https://github.com/sunnypilot/sunnypilot.git
synced 2026-02-18 21:14:01 +08:00
Remove lane planning code (#25651)
* Remove all lane planning logic
* Revert "Update ref"
This reverts commit 8dcb08ebccbb5641443459ac40601a95cf605682.
* bump cereal
* Update ref
old-commit-hash: 2eff6d0ebd
This commit is contained in:
2
cereal
2
cereal
Submodule cereal updated: d3a943ef66...6323950101
@@ -173,7 +173,6 @@ selfdrive/controls/lib/alerts_offroad.json
|
||||
selfdrive/controls/lib/desire_helper.py
|
||||
selfdrive/controls/lib/drive_helpers.py
|
||||
selfdrive/controls/lib/events.py
|
||||
selfdrive/controls/lib/lane_planner.py
|
||||
selfdrive/controls/lib/latcontrol_angle.py
|
||||
selfdrive/controls/lib/latcontrol_indi.py
|
||||
selfdrive/controls/lib/latcontrol_torque.py
|
||||
|
||||
@@ -15,7 +15,7 @@ from system.swaglog import cloudlog
|
||||
from system.version import get_short_branch
|
||||
from selfdrive.boardd.boardd import can_list_to_can_capnp
|
||||
from selfdrive.car.car_helpers import get_car, get_startup_event, get_one_can
|
||||
from selfdrive.controls.lib.lane_planner import CAMERA_OFFSET
|
||||
from selfdrive.controls.lib.lateral_planner import CAMERA_OFFSET
|
||||
from selfdrive.controls.lib.drive_helpers import V_CRUISE_INITIAL, update_v_cruise, initialize_v_cruise
|
||||
from selfdrive.controls.lib.drive_helpers import get_lag_adjusted_curvature
|
||||
from selfdrive.controls.lib.latcontrol import LatControl
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
import numpy as np
|
||||
from cereal import log
|
||||
from common.filter_simple import FirstOrderFilter
|
||||
from common.numpy_fast import interp
|
||||
from common.realtime import DT_MDL
|
||||
from system.swaglog import cloudlog
|
||||
|
||||
|
||||
TRAJECTORY_SIZE = 33
|
||||
# camera offset is meters from center car to camera
|
||||
# model path is in the frame of the camera
|
||||
PATH_OFFSET = 0.00
|
||||
CAMERA_OFFSET = 0.04
|
||||
|
||||
|
||||
class LanePlanner:
|
||||
def __init__(self, wide_camera=False):
|
||||
self.ll_t = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.ll_x = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.lll_y = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.rll_y = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL)
|
||||
self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL)
|
||||
self.lane_width = 3.7
|
||||
|
||||
self.lll_prob = 0.
|
||||
self.rll_prob = 0.
|
||||
self.d_prob = 0.
|
||||
|
||||
self.lll_std = 0.
|
||||
self.rll_std = 0.
|
||||
|
||||
self.l_lane_change_prob = 0.
|
||||
self.r_lane_change_prob = 0.
|
||||
|
||||
self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET
|
||||
self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET
|
||||
|
||||
def parse_model(self, md):
|
||||
lane_lines = md.laneLines
|
||||
if len(lane_lines) == 4 and len(lane_lines[0].t) == TRAJECTORY_SIZE:
|
||||
self.ll_t = (np.array(lane_lines[1].t) + np.array(lane_lines[2].t))/2
|
||||
# left and right ll x is the same
|
||||
self.ll_x = lane_lines[1].x
|
||||
self.lll_y = np.array(lane_lines[1].y) + self.camera_offset
|
||||
self.rll_y = np.array(lane_lines[2].y) + self.camera_offset
|
||||
self.lll_prob = md.laneLineProbs[1]
|
||||
self.rll_prob = md.laneLineProbs[2]
|
||||
self.lll_std = md.laneLineStds[1]
|
||||
self.rll_std = md.laneLineStds[2]
|
||||
|
||||
desire_state = md.meta.desireState
|
||||
if len(desire_state):
|
||||
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
|
||||
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
|
||||
|
||||
def get_d_path(self, v_ego, path_t, path_xyz):
|
||||
# Reduce reliance on lanelines that are too far apart or
|
||||
# will be in a few seconds
|
||||
path_xyz[:, 1] += self.path_offset
|
||||
l_prob, r_prob = self.lll_prob, self.rll_prob
|
||||
width_pts = self.rll_y - self.lll_y
|
||||
prob_mods = []
|
||||
for t_check in (0.0, 1.5, 3.0):
|
||||
width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
|
||||
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
|
||||
mod = min(prob_mods)
|
||||
l_prob *= mod
|
||||
r_prob *= mod
|
||||
|
||||
# Reduce reliance on uncertain lanelines
|
||||
l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
|
||||
r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
|
||||
l_prob *= l_std_mod
|
||||
r_prob *= r_std_mod
|
||||
|
||||
# Find current lanewidth
|
||||
self.lane_width_certainty.update(l_prob * r_prob)
|
||||
current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
|
||||
self.lane_width_estimate.update(current_lane_width)
|
||||
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
|
||||
self.lane_width = self.lane_width_certainty.x * self.lane_width_estimate.x + \
|
||||
(1 - self.lane_width_certainty.x) * speed_lane_width
|
||||
|
||||
clipped_lane_width = min(4.0, self.lane_width)
|
||||
path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
|
||||
path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
|
||||
|
||||
self.d_prob = l_prob + r_prob - l_prob * r_prob
|
||||
lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
|
||||
safe_idxs = np.isfinite(self.ll_t)
|
||||
if safe_idxs[0]:
|
||||
lane_path_y_interp = np.interp(path_t, self.ll_t[safe_idxs], lane_path_y[safe_idxs])
|
||||
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
|
||||
else:
|
||||
cloudlog.warning("Lateral mpc - NaNs in laneline times, ignoring")
|
||||
return path_xyz
|
||||
@@ -4,16 +4,15 @@ from common.numpy_fast import interp
|
||||
from system.swaglog import cloudlog
|
||||
from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
|
||||
from selfdrive.controls.lib.drive_helpers import CONTROL_N, MPC_COST_LAT, LAT_MPC_N
|
||||
from selfdrive.controls.lib.lane_planner import LanePlanner, TRAJECTORY_SIZE
|
||||
from selfdrive.controls.lib.desire_helper import DesireHelper
|
||||
import cereal.messaging as messaging
|
||||
from cereal import log
|
||||
|
||||
TRAJECTORY_SIZE = 33
|
||||
CAMERA_OFFSET = 0.04
|
||||
|
||||
class LateralPlanner:
|
||||
def __init__(self, CP, use_lanelines=True, wide_camera=False):
|
||||
self.use_lanelines = use_lanelines
|
||||
self.LP = LanePlanner(wide_camera)
|
||||
def __init__(self, CP):
|
||||
self.DH = DesireHelper()
|
||||
|
||||
# Vehicle model parameters used to calculate lateral movement of car
|
||||
@@ -42,7 +41,6 @@ class LateralPlanner:
|
||||
|
||||
# Parse model predictions
|
||||
md = sm['modelV2']
|
||||
self.LP.parse_model(md)
|
||||
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
|
||||
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
|
||||
self.t_idxs = np.array(md.position.t)
|
||||
@@ -51,23 +49,17 @@ class LateralPlanner:
|
||||
self.path_xyz_stds = np.column_stack([md.position.xStd, md.position.yStd, md.position.zStd])
|
||||
|
||||
# Lane change logic
|
||||
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
|
||||
desire_state = md.meta.desireState
|
||||
if len(desire_state):
|
||||
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
|
||||
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
|
||||
lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob
|
||||
self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
|
||||
|
||||
# Turn off lanes during lane change
|
||||
if self.DH.desire == log.LateralPlan.Desire.laneChangeRight or self.DH.desire == log.LateralPlan.Desire.laneChangeLeft:
|
||||
self.LP.lll_prob *= self.DH.lane_change_ll_prob
|
||||
self.LP.rll_prob *= self.DH.lane_change_ll_prob
|
||||
|
||||
# Calculate final driving path and set MPC costs
|
||||
if self.use_lanelines:
|
||||
d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
|
||||
self.lat_mpc.set_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, MPC_COST_LAT.STEER_RATE)
|
||||
else:
|
||||
d_path_xyz = self.path_xyz
|
||||
# Heading cost is useful at low speed, otherwise end of plan can be off-heading
|
||||
heading_cost = interp(v_ego, [5.0, 10.0], [MPC_COST_LAT.HEADING, 0.15])
|
||||
self.lat_mpc.set_weights(MPC_COST_LAT.PATH, heading_cost, MPC_COST_LAT.STEER_RATE)
|
||||
d_path_xyz = self.path_xyz
|
||||
# Heading cost is useful at low speed, otherwise end of plan can be off-heading
|
||||
heading_cost = interp(v_ego, [5.0, 10.0], [MPC_COST_LAT.HEADING, 0.15])
|
||||
self.lat_mpc.set_weights(MPC_COST_LAT.PATH, heading_cost, MPC_COST_LAT.STEER_RATE)
|
||||
|
||||
y_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:, 1])
|
||||
heading_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw)
|
||||
@@ -112,20 +104,16 @@ class LateralPlanner:
|
||||
|
||||
lateralPlan = plan_send.lateralPlan
|
||||
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
|
||||
lateralPlan.laneWidth = float(self.LP.lane_width)
|
||||
lateralPlan.dPathPoints = self.y_pts.tolist()
|
||||
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
|
||||
lateralPlan.curvatures = self.lat_mpc.x_sol[0:CONTROL_N, 3].tolist()
|
||||
lateralPlan.curvatureRates = [float(x) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
|
||||
lateralPlan.lProb = float(self.LP.lll_prob)
|
||||
lateralPlan.rProb = float(self.LP.rll_prob)
|
||||
lateralPlan.dProb = float(self.LP.d_prob)
|
||||
|
||||
lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
|
||||
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
|
||||
|
||||
lateralPlan.desire = self.DH.desire
|
||||
lateralPlan.useLaneLines = self.use_lanelines
|
||||
lateralPlan.useLaneLines = False
|
||||
lateralPlan.laneChangeState = self.DH.lane_change_state
|
||||
lateralPlan.laneChangeDirection = self.DH.lane_change_direction
|
||||
|
||||
|
||||
@@ -16,13 +16,8 @@ def plannerd_thread(sm=None, pm=None):
|
||||
CP = car.CarParams.from_bytes(params.get("CarParams", block=True))
|
||||
cloudlog.info("plannerd got CarParams: %s", CP.carName)
|
||||
|
||||
use_lanelines = False
|
||||
wide_camera = params.get_bool('WideCameraOnly')
|
||||
|
||||
cloudlog.event("e2e mode", on=use_lanelines)
|
||||
|
||||
longitudinal_planner = Planner(CP)
|
||||
lateral_planner = LateralPlanner(CP, use_lanelines=use_lanelines, wide_camera=wide_camera)
|
||||
lateral_planner = LateralPlanner(CP)
|
||||
|
||||
if sm is None:
|
||||
sm = messaging.SubMaster(['carControl', 'carState', 'controlsState', 'radarState', 'modelV2'],
|
||||
|
||||
@@ -1 +1 @@
|
||||
5cb8e7ea92f333bdb49682b0593ab2ae5a5f3824
|
||||
e1c189b002a179763fa34f24e5d96f2b2d0c4c49
|
||||
|
||||
Reference in New Issue
Block a user