Merge branch 'master' into visuals-confidence-ball

This commit is contained in:
royjr
2026-02-13 22:22:15 -05:00
committed by GitHub
6 changed files with 142 additions and 64 deletions

View File

@@ -12,7 +12,7 @@ from openpilot.system.ui.lib.application import gui_app
from openpilot.system.ui.lib.shader_polygon import draw_polygon, Gradient
from openpilot.system.ui.widgets import Widget
from openpilot.selfdrive.ui.sunnypilot.mici.onroad.model_renderer import LANE_LINE_COLORS_SP
from openpilot.selfdrive.ui.sunnypilot.mici.onroad.model_renderer import LANE_LINE_COLORS_SP, ModelRendererSP
CLIP_MARGIN = 500
MIN_DRAW_DISTANCE = 10.0
@@ -51,9 +51,10 @@ class LeadVehicle:
fill_alpha: int = 0
class ModelRenderer(Widget):
class ModelRenderer(Widget, ModelRendererSP):
def __init__(self):
super().__init__()
Widget.__init__(self)
ModelRendererSP.__init__(self)
self._longitudinal_control = False
self._experimental_mode = False
self._blend_filter = FirstOrderFilter(1.0, 0.25, 1 / gui_app.target_fps)
@@ -340,6 +341,10 @@ class ModelRenderer(Widget):
allow_throttle = sm['longitudinalPlan'].allowThrottle or not self._longitudinal_control
self._blend_filter.update(int(allow_throttle))
if ui_state.rainbow_path:
self.rainbow_path.draw_rainbow_path(self._rect, self._path)
return
if self._experimental_mode:
# Draw with acceleration coloring
if ui_state.status == UIStatus.DISENGAGED:

View File

@@ -6,8 +6,14 @@ See the LICENSE.md file in the root directory for more details.
"""
import pyray as rl
from openpilot.selfdrive.ui.ui_state import UIStatus
from openpilot.selfdrive.ui.sunnypilot.onroad.rainbow_path import RainbowPath
LANE_LINE_COLORS_SP = {
UIStatus.LAT_ONLY: rl.Color(0, 255, 64, 255),
UIStatus.LONG_ONLY: rl.Color(0, 255, 64, 255),
}
class ModelRendererSP:
def __init__(self):
self.rainbow_path = RainbowPath()

View File

@@ -72,72 +72,28 @@ class TurnSignalWidget(Widget):
class TurnSignalController:
def __init__(self, config: TurnSignalConfig | None = None):
self._config = config or TurnSignalConfig()
def __init__(self):
self._config = TurnSignalConfig()
self._left_signal = TurnSignalWidget(direction=IconSide.left)
self._right_signal = TurnSignalWidget(direction=IconSide.right)
self._last_icon_side = None
@staticmethod
def _update_signal(signal, blindspot, blinker):
if ui_state.blindspot and blindspot:
signal.activate('blind_spot')
elif ui_state.turn_signals and blinker:
signal.activate('signal')
else:
signal.deactivate()
def update(self):
sm = ui_state.sm
ss = sm['selfdriveState']
CS = ui_state.sm['carState']
event_name = ss.alertType.split('/')[0] if ss.alertType else ''
if event_name == 'preLaneChangeLeft':
self._last_icon_side = IconSide.left
self._left_signal.activate('signal')
self._right_signal.deactivate()
elif event_name == 'preLaneChangeRight':
self._last_icon_side = IconSide.right
self._right_signal.activate('signal')
self._left_signal.deactivate()
elif event_name == 'laneChange':
if self._last_icon_side == IconSide.left:
self._left_signal.activate('signal')
self._right_signal.deactivate()
elif self._last_icon_side == IconSide.right:
self._right_signal.activate('signal')
self._left_signal.deactivate()
elif event_name == 'laneChangeBlocked':
CS = sm['carState']
if CS.leftBlinker:
icon_side = IconSide.left
elif CS.rightBlinker:
icon_side = IconSide.right
else:
icon_side = self._last_icon_side
if icon_side == IconSide.left:
self._left_signal.activate('blind_spot')
self._right_signal.deactivate()
elif icon_side == IconSide.right:
self._right_signal.activate('blind_spot')
self._left_signal.deactivate()
else:
self._last_icon_side = None
CS = sm['carState']
if CS.leftBlindspot:
self._left_signal.activate('blind_spot')
elif CS.leftBlinker:
self._left_signal.activate('signal')
else:
self._left_signal.deactivate()
if CS.rightBlindspot:
self._right_signal.activate('blind_spot')
elif CS.rightBlinker:
self._right_signal.activate('signal')
else:
self._right_signal.deactivate()
self._update_signal(self._left_signal, CS.leftBlindspot, CS.leftBlinker)
self._update_signal(self._right_signal, CS.rightBlindspot, CS.rightBlinker)
def render(self, rect: rl.Rectangle):
if not ui_state.turn_signals:
if not ui_state.turn_signals and not ui_state.blindspot:
return
x = rect.x + rect.width / 2

View File

@@ -5,6 +5,7 @@ This file is part of sunnypilot and is licensed under the MIT License.
See the LICENSE.md file in the root directory for more details.
"""
import numpy as np
import pytest
import cereal.messaging as messaging
from cereal import custom, log
@@ -12,11 +13,52 @@ from openpilot.common.params import Params
from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.car.cruise import V_CRUISE_UNSET
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.sunnypilot.selfdrive.controls.lib.smart_cruise_control.vision_controller import SmartCruiseControlVision
from openpilot.sunnypilot.selfdrive.controls.lib.smart_cruise_control import MIN_V
from openpilot.sunnypilot.selfdrive.controls.lib.smart_cruise_control.vision_controller import SmartCruiseControlVision, _ENTERING_PRED_LAT_ACC_TH
VisionState = custom.LongitudinalPlanSP.SmartCruiseControl.VisionState
def _th_above_f32(th: float) -> float:
"""
Return the next representable float32 *above* `th`.
This avoids flaky comparisons around thresholds due to float32 rounding.
"""
th32 = np.float32(th)
above32 = np.nextafter(th32, np.float32(np.inf), dtype=np.float32)
return float(above32)
def _build_single_spike_filtered(n: int, base: float = 1.0) -> np.ndarray:
"""
Create an array where max() is >= threshold but p97 is < threshold.
This demonstrates the behavior difference vs np.amax().
Note: We intentionally construct using float32-representable values to match
the data path through cereal/capnp.
"""
th = float(_ENTERING_PRED_LAT_ACC_TH)
th32 = float(np.float32(th))
# numpy percentile default is linear interpolation: idx=(n-1)*p/100
idx = (n - 1) * 0.97
w = float(idx - np.floor(idx))
base32 = float(np.float32(base))
# Choose spike so that p97 = base + w*(spike-base) < th
# -> spike < base + (th-base)/w. Use a margin (0.9) and ensure spike >= th.
if w == 0.0:
spike = th32 + 1.0
else:
spike = base32 + (th32 - base32) / w * 0.9
spike = max(spike, th32 + 0.01)
arr = np.full(n, base32, dtype=np.float32)
arr[-1] = np.float32(spike)
return arr
def generate_modelV2():
model = messaging.new_message('modelV2')
position = log.XYZTData.new_message()
@@ -101,4 +143,72 @@ class TestSmartCruiseControlVision:
self.scc_v.update(self.sm, True, False, 0., 0., 0.)
assert self.scc_v.state == VisionState.enabled
@pytest.mark.parametrize(
"case, should_enter",
[
("p97_just_above_threshold", True),
("single_spike_filtered", False),
("persistent_high_values", True),
],
ids=[
"p97>threshold_enters",
"single_spike_max_large_but_p97_below_threshold",
"high_values_persist_trigger_entering",
],
)
def test_max_pred_lat_acc_uses_p97_and_threshold(self, case, should_enter):
n = len(ModelConstants.T_IDXS)
th = float(_ENTERING_PRED_LAT_ACC_TH)
if case == "p97_just_above_threshold":
# Use the next representable float32 above threshold to avoid float32 rounding flakiness.
val = _th_above_f32(th)
pred_lat_accels = np.full(n, np.float32(val), dtype=np.float32)
elif case == "single_spike_filtered":
pred_lat_accels = _build_single_spike_filtered(n, base=1.0)
elif case == "persistent_high_values":
# Make enough "high" samples so p97 is driven by the persistent trend, not a single outlier.
high_count = max(2, int(np.ceil(n * 0.03)) + 1)
pred_lat_accels = np.full(n, np.float32(1.0), dtype=np.float32)
pred_lat_accels[-high_count:] = np.float32(2.0)
pred_lat_accels[-1] = np.float32(8.0) # keep one big outlier too
else:
raise AssertionError(f"Unknown case: {case}")
# Override model predictions so:
# predicted_lat_accels = abs(orientationRate.z) * velocity.x == pred_lat_accels
mdl = generate_modelV2()
mdl.modelV2.velocity.x = [1.0 for _ in range(n)]
mdl.modelV2.orientationRate.z = [float(x) for x in pred_lat_accels]
self.sm["modelV2"] = mdl.modelV2
v_ego = float(MIN_V + 5.0)
# 1st update: disabled -> enabled
self.scc_v.update(self.sm, True, False, v_ego, 0.0, 0.0)
# 2nd update: evaluate entering condition from enabled state
self.scc_v.update(self.sm, True, False, v_ego, 0.0, 0.0)
# Controller does percentile on numpy float64 arrays (values already quantized by capnp),
# so compute expected in float64 to match behavior and avoid interpolation/rounding deltas.
expected_p97 = float(np.percentile(pred_lat_accels.astype(np.float64), 97))
# allow tiny numeric differences due to float conversions/interpolation
assert np.isclose(self.scc_v.max_pred_lat_acc, expected_p97, rtol=1e-6, atol=1e-5)
if should_enter:
# We assert entering primarily by state (this is the actual intended behavior).
assert self.scc_v.state == VisionState.entering
# Optional sanity: should be >= threshold with some margin (since we used nextafter above threshold).
assert self.scc_v.max_pred_lat_acc > th
else:
# Difference vs np.amax(): max can be above threshold, but p97 stays below it.
assert float(np.max(pred_lat_accels)) >= th
assert self.scc_v.max_pred_lat_acc < th
assert self.scc_v.state == VisionState.enabled
# TODO-SP: mock modelV2 data to test other states

View File

@@ -90,7 +90,7 @@ class SmartCruiseControlVision:
# get the maximum lat accel from the model
predicted_lat_accels = rate_plan * vel_plan
self.max_pred_lat_acc = np.amax(predicted_lat_accels)
self.max_pred_lat_acc = np.percentile(predicted_lat_accels, 97)
# get the maximum curve based on the current velocity
v_ego = max(self.v_ego, 0.1) # ensure a value greater than 0 for calculations

View File

@@ -166,6 +166,7 @@ class SunnylinkState:
def _worker_thread(self) -> None:
while self._running:
self._sm.update()
if self.is_connected():
self._fetch_roles()
self._fetch_users()