mirror of
https://github.com/sunnypilot/sunnypilot.git
synced 2026-02-18 22:23:56 +08:00
@@ -21,10 +21,10 @@ MPC_T = list(np.arange(0,1.,.2)) + list(np.arange(1.,10.6,.6))
|
||||
N = len(MPC_T) - 1
|
||||
|
||||
|
||||
def RW(v_ego, v_l):
|
||||
def desired_follow_distance(v_ego, v_lead):
|
||||
TR = 1.8
|
||||
G = 9.81
|
||||
return (v_ego * TR - (v_l - v_ego) * TR + v_ego * v_ego / (2 * G) - v_l * v_l / (2 * G))
|
||||
return (v_ego * TR - (v_lead - v_ego) * TR + v_ego * v_ego / (2 * G) - v_lead * v_lead / (2 * G)) + 4.0
|
||||
|
||||
|
||||
def gen_lead_model():
|
||||
@@ -85,21 +85,16 @@ def gen_lead_mpc_solver():
|
||||
ocp.cost.yref_e = np.zeros((3, ))
|
||||
|
||||
x_lead, v_lead = ocp.model.p[0], ocp.model.p[1]
|
||||
G = 9.81
|
||||
TR = 1.8
|
||||
desired_dist = (v_ego * TR
|
||||
- (v_lead - v_ego) * TR
|
||||
+ v_ego*v_ego/(2*G)
|
||||
- v_lead * v_lead / (2*G))
|
||||
dist_err = (desired_dist + 4.0 - (x_lead - x_ego))/(sqrt(v_ego + 0.5) + 0.1)
|
||||
desired_dist = desired_follow_distance(v_ego, v_lead)
|
||||
dist_err = (desired_dist - (x_lead - x_ego))/(sqrt(v_ego + 0.5) + 0.1)
|
||||
|
||||
# TODO hacky weights to keep behavior the same
|
||||
ocp.model.cost_y_expr = vertcat(exp(.3 * dist_err) - 1.,
|
||||
((x_lead - x_ego) - (desired_dist + 4.0)) / (0.05 * v_ego + 0.5),
|
||||
((x_lead - x_ego) - (desired_dist)) / (0.05 * v_ego + 0.5),
|
||||
a_ego * (.1 * v_ego + 1.0),
|
||||
j_ego * (.1 * v_ego + 1.0))
|
||||
ocp.model.cost_y_expr_e = vertcat(exp(.3 * dist_err) - 1.,
|
||||
((x_lead - x_ego) - (desired_dist + 4.0)) / (0.05 * v_ego + 0.5),
|
||||
((x_lead - x_ego) - (desired_dist)) / (0.05 * v_ego + 0.5),
|
||||
a_ego * (.1 * v_ego + 1.0))
|
||||
ocp.parameter_values = np.array([0., .0])
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ import numpy as np
|
||||
from cereal import log
|
||||
import cereal.messaging as messaging
|
||||
from selfdrive.config import Conversions as CV
|
||||
from selfdrive.controls.lib.lead_mpc_lib.lead_mpc import RW, LeadMpc
|
||||
from selfdrive.controls.lib.lead_mpc_lib.lead_mpc import desired_follow_distance, LeadMpc
|
||||
|
||||
|
||||
class FakePubMaster():
|
||||
@@ -68,7 +68,7 @@ class TestFollowingDistance(unittest.TestCase):
|
||||
v_lead = float(speed_mph * CV.MPH_TO_MS)
|
||||
|
||||
simulation_steady_state = run_following_distance_simulation(v_lead)
|
||||
correct_steady_state = RW(v_lead, v_lead) + 4.0
|
||||
correct_steady_state = desired_follow_distance(v_lead, v_lead)
|
||||
|
||||
self.assertAlmostEqual(simulation_steady_state, correct_steady_state, delta=.2)
|
||||
|
||||
|
||||
@@ -9,8 +9,9 @@ class Maneuver():
|
||||
self.speed = kwargs.get("initial_speed", 0.0)
|
||||
self.lead_relevancy = kwargs.get("lead_relevancy", 0)
|
||||
|
||||
self.speed_lead_values = kwargs.get("speed_lead_values", [0.0, 0.0])
|
||||
self.speed_lead_breakpoints = kwargs.get("speed_lead_breakpoints", [0.0, duration])
|
||||
self.speed_lead_values = kwargs.get("speed_lead_values", [0.0, 0.0])
|
||||
self.prob_lead_values = kwargs.get("prob_lead_values", [1.0 for i in range(len(self.speed_lead_breakpoints))])
|
||||
|
||||
self.only_lead2 = kwargs.get("only_lead2", False)
|
||||
self.only_radar = kwargs.get("only_radar", False)
|
||||
@@ -31,13 +32,19 @@ class Maneuver():
|
||||
logs = []
|
||||
while plant.current_time() < self.duration:
|
||||
speed_lead = np.interp(plant.current_time(), self.speed_lead_breakpoints, self.speed_lead_values)
|
||||
log = plant.step(speed_lead)
|
||||
prob = np.interp(plant.current_time(), self.speed_lead_breakpoints, self.prob_lead_values)
|
||||
log = plant.step(speed_lead, prob)
|
||||
|
||||
d_rel = log['distance_lead'] - log['distance'] if self.lead_relevancy else 200.
|
||||
v_rel = speed_lead - log['speed'] if self.lead_relevancy else 0.
|
||||
log['d_rel'] = d_rel
|
||||
log['v_rel'] = v_rel
|
||||
logs.append(np.array([plant.current_time(), log['distance'], log['distance_lead'], log['speed'], speed_lead, log['acceleration']]))
|
||||
logs.append(np.array([plant.current_time(),
|
||||
log['distance'],
|
||||
log['distance_lead'],
|
||||
log['speed'],
|
||||
speed_lead,
|
||||
log['acceleration']]))
|
||||
|
||||
if d_rel < 1.0:
|
||||
print("Crashed!!!!")
|
||||
|
||||
@@ -48,7 +48,7 @@ class Plant():
|
||||
def current_time(self):
|
||||
return float(self.rk.frame) / self.rate
|
||||
|
||||
def step(self, v_lead=0.0):
|
||||
def step(self, v_lead=0.0, prob=1.0):
|
||||
# ******** publish a fake model going straight and fake calibration ********
|
||||
# note that this is worst case for MPC, since model will delay long mpc by one time step
|
||||
radar = messaging.new_message('radarState')
|
||||
@@ -61,10 +61,11 @@ class Plant():
|
||||
d_rel = np.maximum(0., self.distance_lead - self.distance)
|
||||
v_rel = v_lead - self.speed
|
||||
if self.only_radar:
|
||||
prob = 0.0
|
||||
status = True
|
||||
elif prob > .5:
|
||||
status = True
|
||||
else:
|
||||
prob = 1.0
|
||||
status = True
|
||||
status = False
|
||||
else:
|
||||
d_rel = 200.
|
||||
v_rel = 0.
|
||||
@@ -81,7 +82,7 @@ class Plant():
|
||||
lead.aLeadK = float(a_lead)
|
||||
lead.aLeadTau = float(1.5)
|
||||
lead.status = status
|
||||
lead.modelProb = prob
|
||||
lead.modelProb = float(prob)
|
||||
if not self.only_lead2:
|
||||
radar.radarState.leadOne = lead
|
||||
radar.radarState.leadTwo = lead
|
||||
|
||||
@@ -88,6 +88,7 @@ maneuvers = [
|
||||
lead_relevancy=True,
|
||||
initial_distance_lead=10.,
|
||||
speed_lead_values=[0., 0.],
|
||||
prob_lead_values=[0., 0.],
|
||||
speed_lead_breakpoints=[1., 11.],
|
||||
only_radar=True,
|
||||
),
|
||||
|
||||
Reference in New Issue
Block a user