H7 SPI comms (#1158)

* getting health packets

* start cleanup

* pull state machine out

* cleanup
This commit is contained in:
Adeeb Shihadeh
2022-11-14 13:52:52 -08:00
committed by GitHub
parent 9db0ae7056
commit e7131fcee0
5 changed files with 238 additions and 109 deletions

View File

@@ -9,6 +9,13 @@ void tres_init(void) {
while ((PWR->CR3 & PWR_CR3_USB33RDY) == 0);
red_chiplet_init();
// SPI init
set_gpio_alternate(GPIOE, 11, GPIO_AF5_SPI4);
set_gpio_alternate(GPIOE, 12, GPIO_AF5_SPI4);
set_gpio_alternate(GPIOE, 13, GPIO_AF5_SPI4);
set_gpio_alternate(GPIOE, 14, GPIO_AF5_SPI4);
register_set_bits(&(GPIOE->OSPEEDR), GPIO_OSPEEDR_OSPEED11 | GPIO_OSPEEDR_OSPEED12 | GPIO_OSPEEDR_OSPEED13 | GPIO_OSPEEDR_OSPEED14);
}
const board board_tres = {

View File

@@ -1,8 +1,14 @@
#pragma once
#define SPI_BUF_SIZE 1024U
#ifdef STM32H7
__attribute__((section(".ram_d1"))) uint8_t spi_buf_rx[SPI_BUF_SIZE];
__attribute__((section(".ram_d1"))) uint8_t spi_buf_tx[SPI_BUF_SIZE];
#else
uint8_t spi_buf_rx[SPI_BUF_SIZE];
uint8_t spi_buf_tx[SPI_BUF_SIZE];
#endif
#define SPI_CHECKSUM_START 0xABU
#define SPI_SYNC_BYTE 0x5AU
@@ -12,21 +18,39 @@ uint8_t spi_buf_tx[SPI_BUF_SIZE];
// SPI states
enum {
SPI_RX_STATE_HEADER=0U,
SPI_RX_STATE_HEADER_ACK=1U,
SPI_RX_STATE_HEADER_NACK=2U,
SPI_RX_STATE_DATA_RX=3U,
SPI_RX_STATE_DATA_RX_ACK=4U,
SPI_RX_STATE_DATA_TX=5U
SPI_STATE_HEADER,
SPI_STATE_HEADER_ACK,
SPI_STATE_HEADER_NACK,
SPI_STATE_DATA_RX,
SPI_STATE_DATA_RX_ACK,
SPI_STATE_DATA_TX
};
uint8_t spi_state = SPI_RX_STATE_HEADER;
uint8_t spi_state = SPI_STATE_HEADER;
uint8_t spi_endpoint;
uint16_t spi_data_len_mosi;
uint16_t spi_data_len_miso;
#define SPI_HEADER_SIZE 7U
// low level SPI prototypes
void llspi_init(void);
void llspi_mosi_dma(uint8_t *addr, int len);
void llspi_miso_dma(uint8_t *addr, int len);
void spi_init(void) {
// clear buffers (for debugging)
(void)memset(spi_buf_rx, 0, SPI_BUF_SIZE);
(void)memset(spi_buf_tx, 0, SPI_BUF_SIZE);
// platform init
llspi_init();
// Start the first packet!
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
}
bool check_checksum(uint8_t *data, uint16_t len) {
// TODO: can speed this up by casting the bulk to uint32_t and xor-ing the bytes afterwards
uint8_t checksum = SPI_CHECKSUM_START;
@@ -35,3 +59,106 @@ bool check_checksum(uint8_t *data, uint16_t len) {
}
return checksum == 0U;
}
void spi_handle_rx(void) {
uint8_t next_rx_state = SPI_STATE_HEADER;
// parse header
spi_endpoint = spi_buf_rx[1];
spi_data_len_mosi = (spi_buf_rx[3] << 8) | spi_buf_rx[2];
spi_data_len_miso = (spi_buf_rx[5] << 8) | spi_buf_rx[4];
if (spi_state == SPI_STATE_HEADER) {
if ((spi_buf_rx[0] == SPI_SYNC_BYTE) && check_checksum(spi_buf_rx, SPI_HEADER_SIZE)) {
// response: ACK and start receiving data portion
spi_buf_tx[0] = SPI_HACK;
next_rx_state = SPI_STATE_HEADER_ACK;
} else {
// response: NACK and reset state machine
puts("- incorrect header sync or checksum "); hexdump(spi_buf_rx, SPI_HEADER_SIZE);
spi_buf_tx[0] = SPI_NACK;
next_rx_state = SPI_STATE_HEADER_NACK;
}
llspi_miso_dma(spi_buf_tx, 1);
} else if (spi_state == SPI_STATE_DATA_RX) {
// We got everything! Based on the endpoint specified, call the appropriate handler
uint16_t response_len = 0U;
bool reponse_ack = false;
if (check_checksum(&(spi_buf_rx[SPI_HEADER_SIZE]), spi_data_len_mosi + 1U)) {
if (spi_endpoint == 0U) {
if (spi_data_len_mosi >= sizeof(ControlPacket_t)) {
ControlPacket_t ctrl;
(void)memcpy(&ctrl, &spi_buf_rx[SPI_HEADER_SIZE], sizeof(ControlPacket_t));
response_len = comms_control_handler(&ctrl, &spi_buf_tx[3]);
reponse_ack = true;
} else {
puts("SPI: insufficient data for control handler\n");
}
} else if ((spi_endpoint == 1U) || (spi_endpoint == 0x81U)) {
if (spi_data_len_mosi == 0U) {
response_len = comms_can_read(&(spi_buf_tx[3]), spi_data_len_miso);
reponse_ack = true;
} else {
puts("SPI: did not expect data for can_read\n");
}
} else if (spi_endpoint == 2U) {
comms_endpoint2_write(&spi_buf_rx[SPI_HEADER_SIZE], spi_data_len_mosi);
reponse_ack = true;
} else if (spi_endpoint == 3U) {
if (spi_data_len_mosi > 0U) {
comms_can_write(&spi_buf_rx[SPI_HEADER_SIZE], spi_data_len_mosi);
reponse_ack = true;
} else {
puts("SPI: did expect data for can_write\n");
}
} else {
puts("SPI: unexpected endpoint"); puth(spi_endpoint); puts("\n");
}
} else {
// Checksum was incorrect
reponse_ack = false;
puts("- incorrect data checksum\n");
}
// Setup response header
spi_buf_tx[0] = reponse_ack ? SPI_DACK : SPI_NACK;
spi_buf_tx[1] = response_len & 0xFFU;
spi_buf_tx[2] = (response_len >> 8) & 0xFFU;
// Add checksum
uint8_t checksum = SPI_CHECKSUM_START;
for(uint16_t i = 0U; i < (response_len + 3U); i++) {
checksum ^= spi_buf_tx[i];
}
spi_buf_tx[response_len + 3U] = checksum;
// Write response
llspi_miso_dma(spi_buf_tx, response_len + 4U);
next_rx_state = SPI_STATE_DATA_TX;
} else {
puts("SPI: RX unexpected state: "); puth(spi_state); puts("\n");
}
spi_state = next_rx_state;
}
void spi_handle_tx(void) {
if (spi_state == SPI_STATE_HEADER_ACK) {
// ACK was sent, queue up the RX buf for the data + checksum
spi_state = SPI_STATE_DATA_RX;
llspi_mosi_dma(&spi_buf_rx[SPI_HEADER_SIZE], spi_data_len_mosi + 1U);
} else if (spi_state == SPI_STATE_HEADER_NACK) {
// Reset state
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
} else if (spi_state == SPI_STATE_DATA_TX) {
// Reset state
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
} else {
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
puts("SPI: TX unexpected state: "); puth(spi_state); puts("\n");
}
}

View File

@@ -1,4 +1,4 @@
void spi_miso_dma(uint8_t *addr, int len) {
void llspi_miso_dma(uint8_t *addr, int len) {
// disable DMA
DMA2_Stream3->CR &= ~DMA_SxCR_EN;
register_clear_bits(&(SPI1->CR2), SPI_CR2_TXDMAEN);
@@ -12,7 +12,7 @@ void spi_miso_dma(uint8_t *addr, int len) {
DMA2_Stream3->CR |= DMA_SxCR_EN;
}
void spi_mosi_dma(uint8_t *addr, int len) {
void llspi_mosi_dma(uint8_t *addr, int len) {
// disable DMA
register_clear_bits(&(SPI1->CR2), SPI_CR2_RXDMAEN);
DMA2_Stream2->CR &= ~DMA_SxCR_EN;
@@ -36,82 +36,8 @@ void DMA2_Stream2_IRQ_Handler(void) {
ENTER_CRITICAL();
DMA2->LIFCR = DMA_LIFCR_CTCIF2;
uint8_t next_rx_state = SPI_RX_STATE_HEADER;
spi_handle_rx();
// parse header
spi_endpoint = spi_buf_rx[1];
spi_data_len_mosi = spi_buf_rx[3] << 8 | spi_buf_rx[2];
spi_data_len_miso = spi_buf_rx[5] << 8 | spi_buf_rx[4];
if (spi_state == SPI_RX_STATE_HEADER) {
if (spi_buf_rx[0] == SPI_SYNC_BYTE && check_checksum(spi_buf_rx, SPI_HEADER_SIZE)) {
// response: ACK and start receiving data portion
spi_buf_tx[0] = SPI_HACK;
next_rx_state = SPI_RX_STATE_HEADER_ACK;
} else {
// response: NACK and reset state machine
puts("SPI: incorrect header sync or checksum "); /*hexdump(spi_buf_rx, SPI_HEADER_SIZE);*/
spi_buf_tx[0] = SPI_NACK;
next_rx_state = SPI_RX_STATE_HEADER_NACK;
}
spi_miso_dma(spi_buf_tx, 1);
} else if (spi_state == SPI_RX_STATE_DATA_RX) {
// We got everything! Based on the endpoint specified, call the appropriate handler
uint16_t response_len = 0U;
bool reponse_ack = false;
if (check_checksum(spi_buf_rx + SPI_HEADER_SIZE, spi_data_len_mosi + 1)) {
if (spi_endpoint == 0U) {
if (spi_data_len_mosi >= sizeof(ControlPacket_t)) {
response_len = comms_control_handler((ControlPacket_t *)(spi_buf_rx + SPI_HEADER_SIZE), spi_buf_tx + 3);
reponse_ack = true;
} else {
puts("SPI: insufficient data for control handler\n");
}
} else if (spi_endpoint == 1U || spi_endpoint == 0x81U) {
if (spi_data_len_mosi == 0U) {
response_len = comms_can_read(spi_buf_tx + 3, spi_data_len_miso);
reponse_ack = true;
} else {
puts("SPI: did not expect data for can_read\n");
}
} else if (spi_endpoint == 2U) {
comms_endpoint2_write(spi_buf_rx + SPI_HEADER_SIZE, spi_data_len_mosi);
reponse_ack = true;
} else if (spi_endpoint == 3U) {
if (spi_data_len_mosi > 0U) {
comms_can_write(spi_buf_rx + SPI_HEADER_SIZE, spi_data_len_mosi);
reponse_ack = true;
} else {
puts("SPI: did expect data for can_write\n");
}
}
} else {
// Checksum was incorrect
reponse_ack = false;
puts("SPI: incorrect data checksum\n");
}
// Setup response header
spi_buf_tx[0] = reponse_ack ? SPI_DACK : SPI_NACK;
spi_buf_tx[1] = response_len & 0xFFU;
spi_buf_tx[2] = (response_len >> 8) & 0xFFU;
// Add checksum
uint8_t checksum = SPI_CHECKSUM_START;
for(uint16_t i = 0U; i < response_len + 3; i++) {
checksum ^= spi_buf_tx[i];
}
spi_buf_tx[response_len + 3] = checksum;
// Write response
spi_miso_dma(spi_buf_tx, response_len + 4);
next_rx_state = SPI_RX_STATE_DATA_TX;
} else {
puts("SPI: RX unexpected state: "); puth(spi_state); puts("\n");
}
spi_state = next_rx_state;
EXIT_CRITICAL();
}
@@ -127,33 +53,15 @@ void DMA2_Stream3_IRQ_Handler(void) {
(void)dat;
SPI1->DR = 0U;
if (spi_state == SPI_RX_STATE_HEADER_ACK) {
// ACK was sent, queue up the RX buf for the data + checksum
spi_state = SPI_RX_STATE_DATA_RX;
spi_mosi_dma(spi_buf_rx + SPI_HEADER_SIZE, spi_data_len_mosi + 1);
} else if (spi_state == SPI_RX_STATE_HEADER_NACK) {
// Reset state
spi_state = SPI_RX_STATE_HEADER;
spi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
} else if (spi_state == SPI_RX_STATE_DATA_TX) {
// Reset state
spi_state = SPI_RX_STATE_HEADER;
spi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
} else {
puts("SPI: TX unexpected state: "); puth(spi_state); puts("\n");
}
spi_handle_tx();
}
// ***************************** SPI init *****************************
void spi_init(void) {
void llspi_init(void) {
// We expect less than 50 transactions (including control messages and CAN buffers) at the 100Hz boardd interval. Can be raised if needed.
REGISTER_INTERRUPT(DMA2_Stream2_IRQn, DMA2_Stream2_IRQ_Handler, 5000U, FAULT_INTERRUPT_RATE_SPI_DMA)
REGISTER_INTERRUPT(DMA2_Stream3_IRQn, DMA2_Stream3_IRQ_Handler, 5000U, FAULT_INTERRUPT_RATE_SPI_DMA)
// Clear buffers (for debugging)
memset(spi_buf_rx, 0, SPI_BUF_SIZE);
memset(spi_buf_tx, 0, SPI_BUF_SIZE);
// Setup MOSI DMA
register_set(&(DMA2_Stream2->CR), (DMA_SxCR_CHSEL_1 | DMA_SxCR_CHSEL_0 | DMA_SxCR_MINC | DMA_SxCR_TCIE), 0x1E077EFEU);
register_set(&(DMA2_Stream2->PAR), (uint32_t)&(SPI1->DR), 0xFFFFFFFFU);
@@ -167,10 +75,6 @@ void spi_init(void) {
register_set(&(SPI1->CR1), SPI_CR1_SPE, 0xFFFFU);
register_set(&(SPI1->CR2), 0U, 0xF7U);
// Start the first packet!
spi_state = SPI_RX_STATE_HEADER;
spi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
NVIC_EnableIRQ(DMA2_Stream2_IRQn);
NVIC_EnableIRQ(DMA2_Stream3_IRQn);
}

View File

@@ -1,3 +1,91 @@
void spi_init(void) {
// master -> panda DMA start
void llspi_mosi_dma(uint8_t *addr, int len) {
// disable DMA + SPI
register_clear_bits(&(SPI4->CFG1), SPI_CFG1_RXDMAEN);
DMA2_Stream2->CR &= ~DMA_SxCR_EN;
register_clear_bits(&(SPI4->CR1), SPI_CR1_SPE);
// drain the bus
while ((SPI4->SR & SPI_SR_RXP) != 0U) {
volatile uint8_t dat = SPI4->RXDR;
(void)dat;
}
// setup destination and length
register_set(&(DMA2_Stream2->M0AR), (uint32_t)addr, 0xFFFFFFFFU);
DMA2_Stream2->NDTR = len;
// enable DMA + SPI
DMA2_Stream2->CR |= DMA_SxCR_EN;
register_set_bits(&(SPI4->CFG1), SPI_CFG1_RXDMAEN);
register_set_bits(&(SPI4->CR1), SPI_CR1_SPE);
}
// panda -> master DMA start
void llspi_miso_dma(uint8_t *addr, int len) {
// disable DMA
DMA2_Stream3->CR &= ~DMA_SxCR_EN;
register_clear_bits(&(SPI4->CFG1), SPI_CFG1_TXDMAEN);
// setup source and length
register_set(&(DMA2_Stream3->M0AR), (uint32_t)addr, 0xFFFFFFFFU);
DMA2_Stream3->NDTR = len;
// clear under-run while we were reading
SPI4->IFCR |= SPI_IFCR_UDRC;
// enable DMA
register_set_bits(&(SPI4->CFG1), SPI_CFG1_TXDMAEN);
DMA2_Stream3->CR |= DMA_SxCR_EN;
}
// master -> panda DMA finished
void DMA2_Stream2_IRQ_Handler(void) {
// Clear interrupt flag
ENTER_CRITICAL();
DMA2->LIFCR = DMA_LIFCR_CTCIF2;
spi_handle_rx();
EXIT_CRITICAL();
}
// panda -> master DMA finished
void DMA2_Stream3_IRQ_Handler(void) {
// Clear interrupt flag
DMA2->LIFCR = DMA_LIFCR_CTCIF3;
// Wait until the transaction is actually finished and clear the DR
// TODO: needs a timeout here, otherwise it gets stuck with no master clock!
while (!(SPI4->SR & SPI_SR_TXC));
volatile uint8_t dat = SPI4->TXDR;
(void)dat;
spi_handle_tx();
}
void llspi_init(void) {
// We expect less than 50 transactions (including control messages and CAN buffers) at the 100Hz boardd interval. Can be raised if needed.
REGISTER_INTERRUPT(DMA2_Stream2_IRQn, DMA2_Stream2_IRQ_Handler, 5000U, FAULT_INTERRUPT_RATE_SPI_DMA)
REGISTER_INTERRUPT(DMA2_Stream3_IRQn, DMA2_Stream3_IRQ_Handler, 5000U, FAULT_INTERRUPT_RATE_SPI_DMA)
// Setup MOSI DMA
register_set(&(DMAMUX1_Channel10->CCR), 83U, 0xFFFFFFFFU);
register_set(&(DMA2_Stream2->CR), (DMA_SxCR_MINC | DMA_SxCR_TCIE), 0x1E077EFEU);
register_set(&(DMA2_Stream2->PAR), (uint32_t)&(SPI4->RXDR), 0xFFFFFFFFU);
// Setup MISO DMA, memory -> peripheral
register_set(&(DMAMUX1_Channel11->CCR), 84U, 0xFFFFFFFFU);
register_set(&(DMA2_Stream3->CR), (DMA_SxCR_MINC | DMA_SxCR_DIR_0 | DMA_SxCR_TCIE), 0x1E077EFEU);
register_set(&(DMA2_Stream3->PAR), (uint32_t)&(SPI4->TXDR), 0xFFFFFFFFU);
// Enable SPI
register_set(&(SPI4->CFG1), (7U << SPI_CFG1_DSIZE_Pos), SPI_CFG1_DSIZE_Msk);
register_set(&(SPI4->UDRDR), 0xcd, 0xFFFFU); // set under-run value for debugging
register_set(&(SPI4->CR1), SPI_CR1_SPE, 0xFFFFU);
register_set(&(SPI4->CR2), 0, 0xFFFFU);
NVIC_EnableIRQ(DMA2_Stream2_IRQn);
NVIC_EnableIRQ(DMA2_Stream3_IRQn);
}

View File

@@ -85,6 +85,7 @@ void common_init_gpio(void) {
void flasher_peripherals_init(void) {
RCC->AHB1ENR |= RCC_AHB1ENR_USB1OTGHSEN;
RCC->APB2ENR |= RCC_APB2ENR_SPI4EN;
}
// Peripheral initialization
@@ -98,6 +99,8 @@ void peripherals_init(void) {
RCC->AHB4ENR |= RCC_AHB4ENR_GPIOFEN;
RCC->AHB4ENR |= RCC_AHB4ENR_GPIOGEN;
RCC->APB2ENR |= RCC_APB2ENR_SPI4EN; // SPI
RCC->AHB1ENR |= RCC_AHB1ENR_DMA2EN; // SPI DMA
RCC->APB1LENR |= RCC_APB1LENR_TIM2EN; // main counter
RCC->APB1LENR |= RCC_APB1LENR_TIM6EN; // interrupt timer
RCC->APB2ENR |= RCC_APB2ENR_TIM8EN; // clock source timer