more common/ pruning (#30778)

This commit is contained in:
Adeeb Shihadeh 2023-12-17 11:40:46 -08:00 committed by GitHub
parent b75cdd1542
commit 8c1176ca83
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 1 additions and 82 deletions

View File

@ -1,55 +1,8 @@
import os
import sys
import fcntl
import hashlib
import platform
from cffi import FFI
def suffix():
if platform.system() == "Darwin":
return ".dylib"
else:
return ".so"
def ffi_wrap(name, c_code, c_header, tmpdir="/tmp/ccache", cflags="", libraries=None):
if libraries is None:
libraries = []
cache = name + "_" + hashlib.sha1(c_code.encode('utf-8')).hexdigest()
try:
os.mkdir(tmpdir)
except OSError:
pass
fd = os.open(tmpdir, 0)
fcntl.flock(fd, fcntl.LOCK_EX)
try:
sys.path.append(tmpdir)
try:
mod = __import__(cache)
except Exception:
print(f"cache miss {cache}")
compile_code(cache, c_code, c_header, tmpdir, cflags, libraries)
mod = __import__(cache)
finally:
os.close(fd)
return mod.ffi, mod.lib
def compile_code(name, c_code, c_header, directory, cflags="", libraries=None):
if libraries is None:
libraries = []
ffibuilder = FFI()
ffibuilder.set_source(name, c_code, source_extension='.cpp', libraries=libraries)
ffibuilder.cdef(c_header)
os.environ['OPT'] = "-fwrapv -O2 -DNDEBUG -std=c++1z"
os.environ['CFLAGS'] = cflags
ffibuilder.compile(verbose=True, debug=False, tmpdir=directory)
def wrap_compiled(name, directory):
sys.path.append(directory)
mod = __import__(name)
return mod.ffi, mod.lib

View File

@ -1,12 +0,0 @@
class lazy_property():
"""Defines a property whose value will be computed only once and as needed.
This can only be used on instance methods.
"""
def __init__(self, func):
self._func = func
def __get__(self, obj_self, cls):
value = self._func(obj_self)
setattr(obj_self, self._func.__name__, value)
return value

View File

@ -1,22 +0,0 @@
import numpy as np
def deep_interp_np(x, xp, fp, axis=None):
if axis is not None:
fp = fp.swapaxes(0,axis)
x = np.atleast_1d(x)
xp = np.array(xp)
if len(xp) < 2:
return np.repeat(fp, len(x), axis=0)
if min(np.diff(xp)) < 0:
raise RuntimeError('Bad x array for interpolation')
j = np.searchsorted(xp, x) - 1
j = np.clip(j, 0, len(xp)-2)
d = np.divide(x - xp[j], xp[j + 1] - xp[j], out=np.ones_like(x, dtype=np.float64), where=xp[j + 1] - xp[j] != 0)
vals_interp = (fp[j].T*(1 - d)).T + (fp[j + 1].T*d).T
if axis is not None:
vals_interp = vals_interp.swapaxes(0,axis)
if len(vals_interp) == 1:
return vals_interp[0]
else:
return vals_interp