mirror of https://github.com/commaai/panda.git
216 lines
6.7 KiB
C
216 lines
6.7 KiB
C
// include first, needed by safety policies
|
|
#include "safety_declarations.h"
|
|
// Include the actual safety policies.
|
|
#include "safety/safety_defaults.h"
|
|
#include "safety/safety_honda.h"
|
|
#include "safety/safety_toyota.h"
|
|
#include "safety/safety_toyota_ipas.h"
|
|
#include "safety/safety_tesla.h"
|
|
#include "safety/safety_gm_ascm.h"
|
|
#include "safety/safety_gm.h"
|
|
#include "safety/safety_ford.h"
|
|
#include "safety/safety_cadillac.h"
|
|
#include "safety/safety_hyundai.h"
|
|
#include "safety/safety_chrysler.h"
|
|
#include "safety/safety_subaru.h"
|
|
#include "safety/safety_elm327.h"
|
|
|
|
const safety_hooks *current_hooks = &nooutput_hooks;
|
|
|
|
void safety_rx_hook(CAN_FIFOMailBox_TypeDef *to_push){
|
|
current_hooks->rx(to_push);
|
|
}
|
|
|
|
int safety_tx_hook(CAN_FIFOMailBox_TypeDef *to_send) {
|
|
return current_hooks->tx(to_send);
|
|
}
|
|
|
|
int safety_tx_lin_hook(int lin_num, uint8_t *data, int len){
|
|
return current_hooks->tx_lin(lin_num, data, len);
|
|
}
|
|
|
|
// -1 = Disabled (Use GPIO to determine ignition)
|
|
// 0 = Off (not started)
|
|
// 1 = On (started)
|
|
int safety_ignition_hook() {
|
|
return current_hooks->ignition();
|
|
}
|
|
int safety_fwd_hook(int bus_num, CAN_FIFOMailBox_TypeDef *to_fwd) {
|
|
return current_hooks->fwd(bus_num, to_fwd);
|
|
}
|
|
|
|
typedef struct {
|
|
uint16_t id;
|
|
const safety_hooks *hooks;
|
|
} safety_hook_config;
|
|
|
|
#define SAFETY_NOOUTPUT 0
|
|
#define SAFETY_HONDA 1
|
|
#define SAFETY_TOYOTA 2
|
|
#define SAFETY_GM 3
|
|
#define SAFETY_HONDA_BOSCH 4
|
|
#define SAFETY_FORD 5
|
|
#define SAFETY_CADILLAC 6
|
|
#define SAFETY_HYUNDAI 7
|
|
#define SAFETY_TESLA 8
|
|
#define SAFETY_CHRYSLER 9
|
|
#define SAFETY_SUBARU 10
|
|
#define SAFETY_GM_ASCM 0x1334
|
|
#define SAFETY_TOYOTA_IPAS 0x1335
|
|
#define SAFETY_ALLOUTPUT 0x1337
|
|
#define SAFETY_ELM327 0xE327
|
|
|
|
const safety_hook_config safety_hook_registry[] = {
|
|
{SAFETY_NOOUTPUT, &nooutput_hooks},
|
|
{SAFETY_HONDA, &honda_hooks},
|
|
{SAFETY_HONDA_BOSCH, &honda_bosch_hooks},
|
|
{SAFETY_TOYOTA, &toyota_hooks},
|
|
{SAFETY_GM, &gm_hooks},
|
|
{SAFETY_FORD, &ford_hooks},
|
|
{SAFETY_CADILLAC, &cadillac_hooks},
|
|
{SAFETY_HYUNDAI, &hyundai_hooks},
|
|
{SAFETY_CHRYSLER, &chrysler_hooks},
|
|
{SAFETY_SUBARU, &subaru_hooks},
|
|
{SAFETY_TOYOTA_IPAS, &toyota_ipas_hooks},
|
|
{SAFETY_GM_ASCM, &gm_ascm_hooks},
|
|
{SAFETY_TESLA, &tesla_hooks},
|
|
{SAFETY_ALLOUTPUT, &alloutput_hooks},
|
|
{SAFETY_ELM327, &elm327_hooks},
|
|
};
|
|
|
|
int safety_set_mode(uint16_t mode, int16_t param) {
|
|
int set_status = -1; // not set
|
|
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
|
|
for (int i = 0; i < hook_config_count; i++) {
|
|
if (safety_hook_registry[i].id == mode) {
|
|
current_hooks = safety_hook_registry[i].hooks;
|
|
set_status = 0; // set
|
|
break;
|
|
}
|
|
}
|
|
if ((set_status == 0) && (current_hooks->init != NULL)) {
|
|
current_hooks->init(param);
|
|
}
|
|
return set_status;
|
|
}
|
|
|
|
// compute the time elapsed (in microseconds) from 2 counter samples
|
|
// case where ts < ts_last is ok: overflow is properly re-casted into uint32_t
|
|
uint32_t get_ts_elapsed(uint32_t ts, uint32_t ts_last) {
|
|
return ts - ts_last;
|
|
}
|
|
|
|
// convert a trimmed integer to signed 32 bit int
|
|
int to_signed(int d, int bits) {
|
|
int d_signed = d;
|
|
if (d >= (1 << max((bits - 1), 0))) {
|
|
d_signed = d - (1 << max(bits, 0));
|
|
}
|
|
return d_signed;
|
|
}
|
|
|
|
// given a new sample, update the smaple_t struct
|
|
void update_sample(struct sample_t *sample, int sample_new) {
|
|
int sample_size = sizeof(sample->values) / sizeof(sample->values[0]);
|
|
for (int i = sample_size - 1; i > 0; i--) {
|
|
sample->values[i] = sample->values[i-1];
|
|
}
|
|
sample->values[0] = sample_new;
|
|
|
|
// get the minimum and maximum measured samples
|
|
sample->min = sample->values[0];
|
|
sample->max = sample->values[0];
|
|
for (int i = 1; i < sample_size; i++) {
|
|
if (sample->values[i] < sample->min) {
|
|
sample->min = sample->values[i];
|
|
}
|
|
if (sample->values[i] > sample->max) {
|
|
sample->max = sample->values[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
bool max_limit_check(int val, const int MAX, const int MIN) {
|
|
return (val > MAX) || (val < MIN);
|
|
}
|
|
|
|
// check that commanded value isn't too far from measured
|
|
bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
|
|
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
|
|
|
|
// *** val rate limit check ***
|
|
int highest_allowed_val = max(val_last, 0) + MAX_RATE_UP;
|
|
int lowest_allowed_val = min(val_last, 0) - MAX_RATE_UP;
|
|
|
|
// if we've exceeded the meas val, we must start moving toward 0
|
|
highest_allowed_val = min(highest_allowed_val, max(val_last - MAX_RATE_DOWN, max(val_meas->max, 0) + MAX_ERROR));
|
|
lowest_allowed_val = max(lowest_allowed_val, min(val_last + MAX_RATE_DOWN, min(val_meas->min, 0) - MAX_ERROR));
|
|
|
|
// check for violation
|
|
return (val < lowest_allowed_val) || (val > highest_allowed_val);
|
|
}
|
|
|
|
// check that commanded value isn't fighting against driver
|
|
bool driver_limit_check(int val, int val_last, struct sample_t *val_driver,
|
|
const int MAX, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
|
|
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
|
|
|
|
int highest_allowed = max(val_last, 0) + MAX_RATE_UP;
|
|
int lowest_allowed = min(val_last, 0) - MAX_RATE_UP;
|
|
|
|
int driver_max_limit = MAX + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
|
|
int driver_min_limit = -MAX + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
|
|
|
|
// if we've exceeded the applied torque, we must start moving toward 0
|
|
highest_allowed = min(highest_allowed, max(val_last - MAX_RATE_DOWN,
|
|
max(driver_max_limit, 0)));
|
|
lowest_allowed = max(lowest_allowed, min(val_last + MAX_RATE_DOWN,
|
|
min(driver_min_limit, 0)));
|
|
|
|
// check for violation
|
|
return (val < lowest_allowed) || (val > highest_allowed);
|
|
}
|
|
|
|
|
|
// real time check, mainly used for steer torque rate limiter
|
|
bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
|
|
|
|
// *** torque real time rate limit check ***
|
|
int highest_val = max(val_last, 0) + MAX_RT_DELTA;
|
|
int lowest_val = min(val_last, 0) - MAX_RT_DELTA;
|
|
|
|
// check for violation
|
|
return (val < lowest_val) || (val > highest_val);
|
|
}
|
|
|
|
|
|
// interp function that holds extreme values
|
|
float interpolate(struct lookup_t xy, float x) {
|
|
|
|
int size = sizeof(xy.x) / sizeof(xy.x[0]);
|
|
float ret = xy.y[size - 1]; // default output is last point
|
|
|
|
// x is lower than the first point in the x array. Return the first point
|
|
if (x <= xy.x[0]) {
|
|
ret = xy.y[0];
|
|
|
|
} else {
|
|
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
|
|
for (int i=0; i < (size - 1); i++) {
|
|
if (x < xy.x[i+1]) {
|
|
float x0 = xy.x[i];
|
|
float y0 = xy.y[i];
|
|
float dx = xy.x[i+1] - x0;
|
|
float dy = xy.y[i+1] - y0;
|
|
// dx should not be zero as xy.x is supposed ot be monotonic
|
|
if (dx <= 0.) {
|
|
dx = 0.0001;
|
|
}
|
|
ret = (dy * (x - x0) / dx) + y0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|