panda/board/safety.h

422 lines
14 KiB
C

// include first, needed by safety policies
#include "safety_declarations.h"
// Include the actual safety policies.
#include "safety/safety_defaults.h"
#include "safety/safety_honda.h"
#include "safety/safety_toyota.h"
#include "safety/safety_tesla.h"
#include "safety/safety_gm_ascm.h"
#include "safety/safety_gm.h"
#include "safety/safety_ford.h"
#include "safety/safety_hyundai.h"
#include "safety/safety_chrysler.h"
#include "safety/safety_subaru.h"
#include "safety/safety_mazda.h"
#include "safety/safety_nissan.h"
#include "safety/safety_volkswagen.h"
#include "safety/safety_elm327.h"
// from cereal.car.CarParams.SafetyModel
#define SAFETY_SILENT 0U
#define SAFETY_HONDA_NIDEC 1U
#define SAFETY_TOYOTA 2U
#define SAFETY_ELM327 3U
#define SAFETY_GM 4U
#define SAFETY_HONDA_BOSCH_GIRAFFE 5U
#define SAFETY_FORD 6U
#define SAFETY_HYUNDAI 8U
#define SAFETY_CHRYSLER 9U
#define SAFETY_TESLA 10U
#define SAFETY_SUBARU 11U
#define SAFETY_MAZDA 13U
#define SAFETY_NISSAN 14U
#define SAFETY_VOLKSWAGEN_MQB 15U
#define SAFETY_ALLOUTPUT 17U
#define SAFETY_GM_ASCM 18U
#define SAFETY_NOOUTPUT 19U
#define SAFETY_HONDA_BOSCH_HARNESS 20U
#define SAFETY_VOLKSWAGEN_PQ 21U
#define SAFETY_SUBARU_LEGACY 22U
#define SAFETY_HYUNDAI_LEGACY 23U
uint16_t current_safety_mode = SAFETY_SILENT;
const safety_hooks *current_hooks = &nooutput_hooks;
int safety_rx_hook(CAN_FIFOMailBox_TypeDef *to_push){
return current_hooks->rx(to_push);
}
int safety_tx_hook(CAN_FIFOMailBox_TypeDef *to_send) {
return current_hooks->tx(to_send);
}
int safety_tx_lin_hook(int lin_num, uint8_t *data, int len){
return current_hooks->tx_lin(lin_num, data, len);
}
int safety_fwd_hook(int bus_num, CAN_FIFOMailBox_TypeDef *to_fwd) {
return current_hooks->fwd(bus_num, to_fwd);
}
// Given a CRC-8 poly, generate a static lookup table to use with a fast CRC-8
// algorithm. Called at init time for safety modes using CRC-8.
void gen_crc_lookup_table(uint8_t poly, uint8_t crc_lut[]) {
for (int i = 0; i < 256; i++) {
uint8_t crc = i;
for (int j = 0; j < 8; j++) {
if ((crc & 0x80U) != 0U)
crc = (uint8_t)((crc << 1) ^ poly);
else
crc <<= 1;
}
crc_lut[i] = crc;
}
}
bool msg_allowed(CAN_FIFOMailBox_TypeDef *to_send, const CanMsg msg_list[], int len) {
int addr = GET_ADDR(to_send);
int bus = GET_BUS(to_send);
int length = GET_LEN(to_send);
bool allowed = false;
for (int i = 0; i < len; i++) {
if ((addr == msg_list[i].addr) && (bus == msg_list[i].bus) && (length == msg_list[i].len)) {
allowed = true;
break;
}
}
return allowed;
}
// compute the time elapsed (in microseconds) from 2 counter samples
// case where ts < ts_last is ok: overflow is properly re-casted into uint32_t
uint32_t get_ts_elapsed(uint32_t ts, uint32_t ts_last) {
return ts - ts_last;
}
int get_addr_check_index(CAN_FIFOMailBox_TypeDef *to_push, AddrCheckStruct addr_list[], const int len) {
int bus = GET_BUS(to_push);
int addr = GET_ADDR(to_push);
int length = GET_LEN(to_push);
int index = -1;
for (int i = 0; i < len; i++) {
// if multiple msgs are allowed, determine which one is present on the bus
if (!addr_list[i].msg_seen) {
for (uint8_t j = 0U; addr_list[i].msg[j].addr != 0; j++) {
if ((addr == addr_list[i].msg[j].addr) && (bus == addr_list[i].msg[j].bus) &&
(length == addr_list[i].msg[j].len)) {
addr_list[i].index = j;
addr_list[i].msg_seen = true;
break;
}
}
}
int idx = addr_list[i].index;
if ((addr == addr_list[i].msg[idx].addr) && (bus == addr_list[i].msg[idx].bus) &&
(length == addr_list[i].msg[idx].len)) {
index = i;
break;
}
}
return index;
}
// 1Hz safety function called by main. Now just a check for lagging safety messages
void safety_tick(const safety_hooks *hooks) {
uint32_t ts = TIM2->CNT;
if (hooks->addr_check != NULL) {
for (int i=0; i < hooks->addr_check_len; i++) {
uint32_t elapsed_time = get_ts_elapsed(ts, hooks->addr_check[i].last_timestamp);
// lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep.
// Quite conservative to not risk false triggers.
// 2s of lag is worse case, since the function is called at 1Hz
bool lagging = elapsed_time > MAX(hooks->addr_check[i].msg[hooks->addr_check[i].index].expected_timestep * MAX_MISSED_MSGS, 1e6);
hooks->addr_check[i].lagging = lagging;
if (lagging) {
controls_allowed = 0;
}
}
}
}
void update_counter(AddrCheckStruct addr_list[], int index, uint8_t counter) {
if (index != -1) {
uint8_t expected_counter = (addr_list[index].last_counter + 1U) % (addr_list[index].msg[addr_list[index].index].max_counter + 1U);
addr_list[index].wrong_counters += (expected_counter == counter) ? -1 : 1;
addr_list[index].wrong_counters = MAX(MIN(addr_list[index].wrong_counters, MAX_WRONG_COUNTERS), 0);
addr_list[index].last_counter = counter;
}
}
bool is_msg_valid(AddrCheckStruct addr_list[], int index) {
bool valid = true;
if (index != -1) {
if ((!addr_list[index].valid_checksum) || (addr_list[index].wrong_counters >= MAX_WRONG_COUNTERS)) {
valid = false;
controls_allowed = 0;
}
}
return valid;
}
void update_addr_timestamp(AddrCheckStruct addr_list[], int index) {
if (index != -1) {
uint32_t ts = TIM2->CNT;
addr_list[index].last_timestamp = ts;
}
}
bool addr_safety_check(CAN_FIFOMailBox_TypeDef *to_push,
AddrCheckStruct *rx_checks,
const int rx_checks_len,
uint8_t (*get_checksum)(CAN_FIFOMailBox_TypeDef *to_push),
uint8_t (*compute_checksum)(CAN_FIFOMailBox_TypeDef *to_push),
uint8_t (*get_counter)(CAN_FIFOMailBox_TypeDef *to_push)) {
int index = get_addr_check_index(to_push, rx_checks, rx_checks_len);
update_addr_timestamp(rx_checks, index);
if (index != -1) {
// checksum check
if ((get_checksum != NULL) && (compute_checksum != NULL) && rx_checks[index].msg[rx_checks[index].index].check_checksum) {
uint8_t checksum = get_checksum(to_push);
uint8_t checksum_comp = compute_checksum(to_push);
rx_checks[index].valid_checksum = checksum_comp == checksum;
} else {
rx_checks[index].valid_checksum = true;
}
// counter check (max_counter == 0 means skip check)
if ((get_counter != NULL) && (rx_checks[index].msg[rx_checks[index].index].max_counter > 0U)) {
uint8_t counter = get_counter(to_push);
update_counter(rx_checks, index, counter);
} else {
rx_checks[index].wrong_counters = 0U;
}
}
return is_msg_valid(rx_checks, index);
}
void generic_rx_checks(bool stock_ecu_detected) {
// exit controls on rising edge of gas press
if (gas_pressed && !gas_pressed_prev && !(unsafe_mode & UNSAFE_DISABLE_DISENGAGE_ON_GAS)) {
controls_allowed = 0;
}
gas_pressed_prev = gas_pressed;
// exit controls on rising edge of brake press
if (brake_pressed && (!brake_pressed_prev || vehicle_moving)) {
controls_allowed = 0;
}
brake_pressed_prev = brake_pressed;
// check if stock ECU is on bus broken by car harness
if ((safety_mode_cnt > RELAY_TRNS_TIMEOUT) && stock_ecu_detected) {
relay_malfunction_set();
}
}
void relay_malfunction_set(void) {
relay_malfunction = true;
fault_occurred(FAULT_RELAY_MALFUNCTION);
}
void relay_malfunction_reset(void) {
relay_malfunction = false;
fault_recovered(FAULT_RELAY_MALFUNCTION);
}
typedef struct {
uint16_t id;
const safety_hooks *hooks;
} safety_hook_config;
const safety_hook_config safety_hook_registry[] = {
{SAFETY_SILENT, &nooutput_hooks},
{SAFETY_HONDA_NIDEC, &honda_nidec_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_ELM327, &elm327_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_HONDA_BOSCH_GIRAFFE, &honda_bosch_giraffe_hooks},
{SAFETY_HONDA_BOSCH_HARNESS, &honda_bosch_harness_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_VOLKSWAGEN_MQB, &volkswagen_mqb_hooks},
{SAFETY_NISSAN, &nissan_hooks},
{SAFETY_NOOUTPUT, &nooutput_hooks},
{SAFETY_HYUNDAI_LEGACY, &hyundai_legacy_hooks},
#ifdef ALLOW_DEBUG
{SAFETY_MAZDA, &mazda_hooks},
{SAFETY_SUBARU_LEGACY, &subaru_legacy_hooks},
{SAFETY_VOLKSWAGEN_PQ, &volkswagen_pq_hooks},
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
{SAFETY_GM_ASCM, &gm_ascm_hooks},
{SAFETY_FORD, &ford_hooks},
#endif
};
int set_safety_hooks(uint16_t mode, int16_t param) {
// reset state set by safety mode
safety_mode_cnt = 0U;
relay_malfunction = false;
gas_interceptor_detected = false;
gas_interceptor_prev = 0;
gas_pressed = false;
gas_pressed_prev = false;
brake_pressed = false;
brake_pressed_prev = false;
cruise_engaged_prev = false;
vehicle_speed = 0;
vehicle_moving = false;
desired_torque_last = 0;
rt_torque_last = 0;
ts_angle_last = 0;
desired_angle_last = 0;
ts_last = 0;
torque_meas.max = 0;
torque_meas.max = 0;
torque_driver.min = 0;
torque_driver.max = 0;
angle_meas.min = 0;
angle_meas.max = 0;
int set_status = -1; // not set
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
for (int i = 0; i < hook_config_count; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
current_safety_mode = safety_hook_registry[i].id;
set_status = 0; // set
}
// reset message index and seen flags in addr struct
for (int j = 0; j < safety_hook_registry[i].hooks->addr_check_len; j++) {
safety_hook_registry[i].hooks->addr_check[j].index = 0;
safety_hook_registry[i].hooks->addr_check[j].msg_seen = false;
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
current_hooks->init(param);
}
return set_status;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
if (d >= (1 << MAX((bits - 1), 0))) {
d_signed = d - (1 << MAX(bits, 0));
}
return d_signed;
}
// given a new sample, update the smaple_t struct
void update_sample(struct sample_t *sample, int sample_new) {
int sample_size = sizeof(sample->values) / sizeof(sample->values[0]);
for (int i = sample_size - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < sample_size; i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
bool max_limit_check(int val, const int MAX_VAL, const int MIN_VAL) {
return (val > MAX_VAL) || (val < MIN_VAL);
}
// check that commanded value isn't too far from measured
bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR));
// check for violation
return (val < lowest_allowed) || (val > highest_allowed);
}
// check that commanded value isn't fighting against driver
bool driver_limit_check(int val, int val_last, struct sample_t *val_driver,
const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN,
MAX(driver_max_limit, 0)));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN,
MIN(driver_min_limit, 0)));
// check for violation
return (val < lowest_allowed) || (val > highest_allowed);
}
// real time check, mainly used for steer torque rate limiter
bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = MAX(val_last, 0) + MAX_RT_DELTA;
int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA;
// check for violation
return (val < lowest_val) || (val > highest_val);
}
// interp function that holds extreme values
float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
float ret = xy.y[size - 1]; // default output is last point
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
ret = xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < (size - 1); i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed to be monotonic
if (dx <= 0.) {
dx = 0.0001;
}
ret = (dy * (x - x0) / dx) + y0;
break;
}
}
}
return ret;
}