panda/board/safety.h

216 lines
6.7 KiB
C

// include first, needed by safety policies
#include "safety_declarations.h"
// Include the actual safety policies.
#include "safety/safety_defaults.h"
#include "safety/safety_honda.h"
#include "safety/safety_toyota.h"
#include "safety/safety_toyota_ipas.h"
#include "safety/safety_tesla.h"
#include "safety/safety_gm_ascm.h"
#include "safety/safety_gm.h"
#include "safety/safety_ford.h"
#include "safety/safety_cadillac.h"
#include "safety/safety_hyundai.h"
#include "safety/safety_chrysler.h"
#include "safety/safety_subaru.h"
#include "safety/safety_elm327.h"
const safety_hooks *current_hooks = &nooutput_hooks;
void safety_rx_hook(CAN_FIFOMailBox_TypeDef *to_push){
current_hooks->rx(to_push);
}
int safety_tx_hook(CAN_FIFOMailBox_TypeDef *to_send) {
return current_hooks->tx(to_send);
}
int safety_tx_lin_hook(int lin_num, uint8_t *data, int len){
return current_hooks->tx_lin(lin_num, data, len);
}
// -1 = Disabled (Use GPIO to determine ignition)
// 0 = Off (not started)
// 1 = On (started)
int safety_ignition_hook() {
return current_hooks->ignition();
}
int safety_fwd_hook(int bus_num, CAN_FIFOMailBox_TypeDef *to_fwd) {
return current_hooks->fwd(bus_num, to_fwd);
}
typedef struct {
uint16_t id;
const safety_hooks *hooks;
} safety_hook_config;
#define SAFETY_NOOUTPUT 0
#define SAFETY_HONDA 1
#define SAFETY_TOYOTA 2
#define SAFETY_GM 3
#define SAFETY_HONDA_BOSCH 4
#define SAFETY_FORD 5
#define SAFETY_CADILLAC 6
#define SAFETY_HYUNDAI 7
#define SAFETY_TESLA 8
#define SAFETY_CHRYSLER 9
#define SAFETY_SUBARU 10
#define SAFETY_GM_ASCM 0x1334
#define SAFETY_TOYOTA_IPAS 0x1335
#define SAFETY_ALLOUTPUT 0x1337
#define SAFETY_ELM327 0xE327
const safety_hook_config safety_hook_registry[] = {
{SAFETY_NOOUTPUT, &nooutput_hooks},
{SAFETY_HONDA, &honda_hooks},
{SAFETY_HONDA_BOSCH, &honda_bosch_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_FORD, &ford_hooks},
{SAFETY_CADILLAC, &cadillac_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_TOYOTA_IPAS, &toyota_ipas_hooks},
{SAFETY_GM_ASCM, &gm_ascm_hooks},
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
{SAFETY_ELM327, &elm327_hooks},
};
#define HOOK_CONFIG_COUNT (sizeof(safety_hook_registry)/sizeof(safety_hook_config))
int safety_set_mode(uint16_t mode, int16_t param) {
int set_status = -1; // not set
for (int i = 0; i < HOOK_CONFIG_COUNT; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
set_status = 0; // set
break;
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
current_hooks->init(param);
}
return set_status;
}
// compute the time elapsed (in microseconds) from 2 counter samples
// case where ts < ts_last is ok: overflow is properly re-casted into uint32_t
uint32_t get_ts_elapsed(uint32_t ts, uint32_t ts_last) {
return ts - ts_last;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
if (d >= (1 << (bits - 1))) {
d_signed = d - (1 << bits);
}
return d_signed;
}
// given a new sample, update the smaple_t struct
void update_sample(struct sample_t *sample, int sample_new) {
for (int i = sizeof(sample->values)/sizeof(sample->values[0]) - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < sizeof(sample->values) / sizeof(sample->values[0]); i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
bool max_limit_check(int val, const int MAX, const int MIN) {
return (val > MAX) || (val < MIN);
}
// check that commanded value isn't too far from measured
bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_val = max(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_val = min(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
highest_allowed_val = min(highest_allowed_val, max(val_last - MAX_RATE_DOWN, max(val_meas->max, 0) + MAX_ERROR));
lowest_allowed_val = max(lowest_allowed_val, min(val_last + MAX_RATE_DOWN, min(val_meas->min, 0) - MAX_ERROR));
// check for violation
return (val < lowest_allowed_val) || (val > highest_allowed_val);
}
// check that commanded value isn't fighting against driver
bool driver_limit_check(int val, int val_last, struct sample_t *val_driver,
const int MAX, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
int highest_allowed = max(val_last, 0) + MAX_RATE_UP;
int lowest_allowed = min(val_last, 0) - MAX_RATE_UP;
int driver_max_limit = MAX + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
highest_allowed = min(highest_allowed, max(val_last - MAX_RATE_DOWN,
max(driver_max_limit, 0)));
lowest_allowed = max(lowest_allowed, min(val_last + MAX_RATE_DOWN,
min(driver_min_limit, 0)));
// check for violation
return (val < lowest_allowed) || (val > highest_allowed);
}
// real time check, mainly used for steer torque rate limiter
bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = max(val_last, 0) + MAX_RT_DELTA;
int lowest_val = min(val_last, 0) - MAX_RT_DELTA;
// check for violation
return (val < lowest_val) || (val > highest_val);
}
// interp function that holds extreme values
float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
float ret = xy.y[size - 1]; // default output is last point
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
ret = xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < (size - 1); i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed ot be monotonic
if (dx <= 0.) {
dx = 0.0001;
}
ret = (dy * (x - x0) / dx) + y0;
break;
}
}
}
return ret;
}