panda/board/safety.h

747 lines
27 KiB
C

#pragma once
#include "safety_declarations.h"
#include "can.h"
// include the safety policies.
#include "safety/safety_defaults.h"
#include "safety/safety_honda.h"
#include "safety/safety_toyota.h"
#include "safety/safety_tesla.h"
#include "safety/safety_gm.h"
#include "safety/safety_ford.h"
#include "safety/safety_hyundai.h"
#include "safety/safety_chrysler.h"
#include "safety/safety_subaru.h"
#include "safety/safety_subaru_preglobal.h"
#include "safety/safety_mazda.h"
#include "safety/safety_nissan.h"
#include "safety/safety_volkswagen_mqb.h"
#include "safety/safety_volkswagen_pq.h"
#include "safety/safety_elm327.h"
#include "safety/safety_body.h"
// CAN-FD only safety modes
#ifdef CANFD
#include "safety/safety_hyundai_canfd.h"
#endif
// from cereal.car.CarParams.SafetyModel
#define SAFETY_SILENT 0U
#define SAFETY_HONDA_NIDEC 1U
#define SAFETY_TOYOTA 2U
#define SAFETY_ELM327 3U
#define SAFETY_GM 4U
#define SAFETY_HONDA_BOSCH_GIRAFFE 5U
#define SAFETY_FORD 6U
#define SAFETY_HYUNDAI 8U
#define SAFETY_CHRYSLER 9U
#define SAFETY_TESLA 10U
#define SAFETY_SUBARU 11U
#define SAFETY_MAZDA 13U
#define SAFETY_NISSAN 14U
#define SAFETY_VOLKSWAGEN_MQB 15U
#define SAFETY_ALLOUTPUT 17U
#define SAFETY_GM_ASCM 18U
#define SAFETY_NOOUTPUT 19U
#define SAFETY_HONDA_BOSCH 20U
#define SAFETY_VOLKSWAGEN_PQ 21U
#define SAFETY_SUBARU_PREGLOBAL 22U
#define SAFETY_HYUNDAI_LEGACY 23U
#define SAFETY_HYUNDAI_COMMUNITY 24U
#define SAFETY_STELLANTIS 25U
#define SAFETY_FAW 26U
#define SAFETY_BODY 27U
#define SAFETY_HYUNDAI_CANFD 28U
uint32_t GET_BYTES(const CANPacket_t *msg, int start, int len) {
uint32_t ret = 0U;
for (int i = 0; i < len; i++) {
const uint32_t shift = i * 8;
ret |= (((uint32_t)msg->data[start + i]) << shift);
}
return ret;
}
const int MAX_WRONG_COUNTERS = 5;
// This can be set by the safety hooks
bool controls_allowed = false;
bool relay_malfunction = false;
bool gas_pressed = false;
bool gas_pressed_prev = false;
bool brake_pressed = false;
bool brake_pressed_prev = false;
bool regen_braking = false;
bool regen_braking_prev = false;
bool cruise_engaged_prev = false;
struct sample_t vehicle_speed;
bool vehicle_moving = false;
bool acc_main_on = false; // referred to as "ACC off" in ISO 15622:2018
int cruise_button_prev = 0;
bool safety_rx_checks_invalid = false;
// for safety modes with torque steering control
int desired_torque_last = 0; // last desired steer torque
int rt_torque_last = 0; // last desired torque for real time check
int valid_steer_req_count = 0; // counter for steer request bit matching non-zero torque
int invalid_steer_req_count = 0; // counter to allow multiple frames of mismatching torque request bit
struct sample_t torque_meas; // last 6 motor torques produced by the eps
struct sample_t torque_driver; // last 6 driver torques measured
uint32_t ts_torque_check_last = 0;
uint32_t ts_steer_req_mismatch_last = 0; // last timestamp steer req was mismatched with torque
// state for controls_allowed timeout logic
bool heartbeat_engaged = false; // openpilot enabled, passed in heartbeat USB command
uint32_t heartbeat_engaged_mismatches = 0; // count of mismatches between heartbeat_engaged and controls_allowed
// for safety modes with angle steering control
uint32_t ts_angle_last = 0;
int desired_angle_last = 0;
struct sample_t angle_meas; // last 6 steer angles/curvatures
int alternative_experience = 0;
// time since safety mode has been changed
uint32_t safety_mode_cnt = 0U;
uint16_t current_safety_mode = SAFETY_SILENT;
uint16_t current_safety_param = 0;
static const safety_hooks *current_hooks = &nooutput_hooks;
safety_config current_safety_config;
static bool is_msg_valid(RxCheck addr_list[], int index) {
bool valid = true;
if (index != -1) {
if (!addr_list[index].status.valid_checksum || !addr_list[index].status.valid_quality_flag || (addr_list[index].status.wrong_counters >= MAX_WRONG_COUNTERS)) {
valid = false;
controls_allowed = false;
}
}
return valid;
}
static int get_addr_check_index(const CANPacket_t *to_push, RxCheck addr_list[], const int len) {
int bus = GET_BUS(to_push);
int addr = GET_ADDR(to_push);
int length = GET_LEN(to_push);
int index = -1;
for (int i = 0; i < len; i++) {
// if multiple msgs are allowed, determine which one is present on the bus
if (!addr_list[i].status.msg_seen) {
for (uint8_t j = 0U; (j < MAX_ADDR_CHECK_MSGS) && (addr_list[i].msg[j].addr != 0); j++) {
if ((addr == addr_list[i].msg[j].addr) && (bus == addr_list[i].msg[j].bus) &&
(length == addr_list[i].msg[j].len)) {
addr_list[i].status.index = j;
addr_list[i].status.msg_seen = true;
break;
}
}
}
if (addr_list[i].status.msg_seen) {
int idx = addr_list[i].status.index;
if ((addr == addr_list[i].msg[idx].addr) && (bus == addr_list[i].msg[idx].bus) &&
(length == addr_list[i].msg[idx].len)) {
index = i;
break;
}
}
}
return index;
}
static void update_addr_timestamp(RxCheck addr_list[], int index) {
if (index != -1) {
uint32_t ts = microsecond_timer_get();
addr_list[index].status.last_timestamp = ts;
}
}
static void update_counter(RxCheck addr_list[], int index, uint8_t counter) {
if (index != -1) {
uint8_t expected_counter = (addr_list[index].status.last_counter + 1U) % (addr_list[index].msg[addr_list[index].status.index].max_counter + 1U);
addr_list[index].status.wrong_counters += (expected_counter == counter) ? -1 : 1;
addr_list[index].status.wrong_counters = CLAMP(addr_list[index].status.wrong_counters, 0, MAX_WRONG_COUNTERS);
addr_list[index].status.last_counter = counter;
}
}
static bool rx_msg_safety_check(const CANPacket_t *to_push,
const safety_config *cfg,
const safety_hooks *safety_hooks) {
int index = get_addr_check_index(to_push, cfg->rx_checks, cfg->rx_checks_len);
update_addr_timestamp(cfg->rx_checks, index);
if (index != -1) {
// checksum check
if ((safety_hooks->get_checksum != NULL) && (safety_hooks->compute_checksum != NULL) && cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].check_checksum) {
uint32_t checksum = safety_hooks->get_checksum(to_push);
uint32_t checksum_comp = safety_hooks->compute_checksum(to_push);
cfg->rx_checks[index].status.valid_checksum = checksum_comp == checksum;
} else {
cfg->rx_checks[index].status.valid_checksum = true;
}
// counter check (max_counter == 0 means skip check)
if ((safety_hooks->get_counter != NULL) && (cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].max_counter > 0U)) {
uint8_t counter = safety_hooks->get_counter(to_push);
update_counter(cfg->rx_checks, index, counter);
} else {
cfg->rx_checks[index].status.wrong_counters = 0U;
}
// quality flag check
if ((safety_hooks->get_quality_flag_valid != NULL) && cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].quality_flag) {
cfg->rx_checks[index].status.valid_quality_flag = safety_hooks->get_quality_flag_valid(to_push);
} else {
cfg->rx_checks[index].status.valid_quality_flag = true;
}
}
return is_msg_valid(cfg->rx_checks, index);
}
bool safety_rx_hook(const CANPacket_t *to_push) {
bool controls_allowed_prev = controls_allowed;
bool valid = rx_msg_safety_check(to_push, &current_safety_config, current_hooks);
if (valid) {
current_hooks->rx(to_push);
}
// reset mismatches on rising edge of controls_allowed to avoid rare race condition
if (controls_allowed && !controls_allowed_prev) {
heartbeat_engaged_mismatches = 0;
}
return valid;
}
static bool msg_allowed(const CANPacket_t *to_send, const CanMsg msg_list[], int len) {
int addr = GET_ADDR(to_send);
int bus = GET_BUS(to_send);
int length = GET_LEN(to_send);
bool allowed = false;
for (int i = 0; i < len; i++) {
if ((addr == msg_list[i].addr) && (bus == msg_list[i].bus) && (length == msg_list[i].len)) {
allowed = true;
break;
}
}
return allowed;
}
bool safety_tx_hook(CANPacket_t *to_send) {
bool whitelisted = msg_allowed(to_send, current_safety_config.tx_msgs, current_safety_config.tx_msgs_len);
if ((current_safety_mode == SAFETY_ALLOUTPUT) || (current_safety_mode == SAFETY_ELM327)) {
whitelisted = true;
}
const bool safety_allowed = current_hooks->tx(to_send);
return !relay_malfunction && whitelisted && safety_allowed;
}
int safety_fwd_hook(int bus_num, int addr) {
return (relay_malfunction ? -1 : current_hooks->fwd(bus_num, addr));
}
bool get_longitudinal_allowed(void) {
return controls_allowed && !gas_pressed_prev;
}
// Given a CRC-8 poly, generate a static lookup table to use with a fast CRC-8
// algorithm. Called at init time for safety modes using CRC-8.
void gen_crc_lookup_table_8(uint8_t poly, uint8_t crc_lut[]) {
for (uint16_t i = 0U; i <= 0xFFU; i++) {
uint8_t crc = (uint8_t)i;
for (int j = 0; j < 8; j++) {
if ((crc & 0x80U) != 0U) {
crc = (uint8_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
#ifdef CANFD
void gen_crc_lookup_table_16(uint16_t poly, uint16_t crc_lut[]) {
for (uint16_t i = 0; i < 256U; i++) {
uint16_t crc = i << 8U;
for (uint16_t j = 0; j < 8U; j++) {
if ((crc & 0x8000U) != 0U) {
crc = (uint16_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
#endif
// 1Hz safety function called by main. Now just a check for lagging safety messages
void safety_tick(const safety_config *cfg) {
const uint8_t MAX_MISSED_MSGS = 10U;
bool rx_checks_invalid = false;
uint32_t ts = microsecond_timer_get();
if (cfg != NULL) {
for (int i=0; i < cfg->rx_checks_len; i++) {
uint32_t elapsed_time = get_ts_elapsed(ts, cfg->rx_checks[i].status.last_timestamp);
// lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep.
// Quite conservative to not risk false triggers.
// 2s of lag is worse case, since the function is called at 1Hz
uint32_t timestep = 1e6 / cfg->rx_checks[i].msg[cfg->rx_checks[i].status.index].frequency;
bool lagging = elapsed_time > MAX(timestep * MAX_MISSED_MSGS, 1e6);
cfg->rx_checks[i].status.lagging = lagging;
if (lagging) {
controls_allowed = false;
}
if (lagging || !is_msg_valid(cfg->rx_checks, i)) {
rx_checks_invalid = true;
}
}
}
safety_rx_checks_invalid = rx_checks_invalid;
}
static void relay_malfunction_set(void) {
relay_malfunction = true;
fault_occurred(FAULT_RELAY_MALFUNCTION);
}
void generic_rx_checks(bool stock_ecu_detected) {
// allow 1s of transition timeout after relay changes state before assessing malfunctioning
const uint32_t RELAY_TRNS_TIMEOUT = 1U;
// exit controls on rising edge of gas press
if (gas_pressed && !gas_pressed_prev && !(alternative_experience & ALT_EXP_DISABLE_DISENGAGE_ON_GAS)) {
controls_allowed = false;
}
gas_pressed_prev = gas_pressed;
// exit controls on rising edge of brake press
if (brake_pressed && (!brake_pressed_prev || vehicle_moving)) {
controls_allowed = false;
}
brake_pressed_prev = brake_pressed;
// exit controls on rising edge of regen paddle
if (regen_braking && (!regen_braking_prev || vehicle_moving)) {
controls_allowed = false;
}
regen_braking_prev = regen_braking;
// check if stock ECU is on bus broken by car harness
if ((safety_mode_cnt > RELAY_TRNS_TIMEOUT) && stock_ecu_detected) {
relay_malfunction_set();
}
}
static void relay_malfunction_reset(void) {
relay_malfunction = false;
fault_recovered(FAULT_RELAY_MALFUNCTION);
}
// resets values and min/max for sample_t struct
static void reset_sample(struct sample_t *sample) {
for (int i = 0; i < MAX_SAMPLE_VALS; i++) {
sample->values[i] = 0;
}
update_sample(sample, 0);
}
int set_safety_hooks(uint16_t mode, uint16_t param) {
const safety_hook_config safety_hook_registry[] = {
{SAFETY_SILENT, &nooutput_hooks},
{SAFETY_HONDA_NIDEC, &honda_nidec_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_ELM327, &elm327_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_HONDA_BOSCH, &honda_bosch_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_VOLKSWAGEN_MQB, &volkswagen_mqb_hooks},
{SAFETY_NISSAN, &nissan_hooks},
{SAFETY_NOOUTPUT, &nooutput_hooks},
{SAFETY_HYUNDAI_LEGACY, &hyundai_legacy_hooks},
{SAFETY_MAZDA, &mazda_hooks},
{SAFETY_BODY, &body_hooks},
{SAFETY_FORD, &ford_hooks},
#ifdef CANFD
{SAFETY_HYUNDAI_CANFD, &hyundai_canfd_hooks},
#endif
#ifdef ALLOW_DEBUG
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_SUBARU_PREGLOBAL, &subaru_preglobal_hooks},
{SAFETY_VOLKSWAGEN_PQ, &volkswagen_pq_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
#endif
};
// reset state set by safety mode
safety_mode_cnt = 0U;
relay_malfunction = false;
gas_pressed = false;
gas_pressed_prev = false;
brake_pressed = false;
brake_pressed_prev = false;
regen_braking = false;
regen_braking_prev = false;
cruise_engaged_prev = false;
vehicle_moving = false;
acc_main_on = false;
cruise_button_prev = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_angle_last = 0;
desired_angle_last = 0;
ts_torque_check_last = 0;
ts_steer_req_mismatch_last = 0;
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
// reset samples
reset_sample(&vehicle_speed);
reset_sample(&torque_meas);
reset_sample(&torque_driver);
reset_sample(&angle_meas);
controls_allowed = false;
relay_malfunction_reset();
safety_rx_checks_invalid = false;
current_safety_config.rx_checks = NULL;
current_safety_config.rx_checks_len = 0;
current_safety_config.tx_msgs = NULL;
current_safety_config.tx_msgs_len = 0;
int set_status = -1; // not set
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
for (int i = 0; i < hook_config_count; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
current_safety_mode = mode;
current_safety_param = param;
set_status = 0; // set
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
safety_config cfg = current_hooks->init(param);
current_safety_config.rx_checks = cfg.rx_checks;
current_safety_config.rx_checks_len = cfg.rx_checks_len;
current_safety_config.tx_msgs = cfg.tx_msgs;
current_safety_config.tx_msgs_len = cfg.tx_msgs_len;
// reset all dynamic fields in addr struct
for (int j = 0; j < current_safety_config.rx_checks_len; j++) {
current_safety_config.rx_checks[j].status = (RxStatus){0};
}
}
return set_status;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
int max_value = (1 << MAX((bits - 1), 0));
if (d >= max_value) {
d_signed = d - (1 << MAX(bits, 0));
}
return d_signed;
}
// given a new sample, update the sample_t struct
void update_sample(struct sample_t *sample, int sample_new) {
for (int i = MAX_SAMPLE_VALS - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < MAX_SAMPLE_VALS; i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
static bool max_limit_check(int val, const int MAX_VAL, const int MIN_VAL) {
return (val > MAX_VAL) || (val < MIN_VAL);
}
// check that commanded torque value isn't too far from measured
static bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// check that commanded value isn't fighting against driver
static bool driver_limit_check(int val, int val_last, const struct sample_t *val_driver,
const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
// torque delta/rate limits
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// driver
int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN,
MAX(driver_max_limit, 0)));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN,
MIN(driver_min_limit, 0)));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// real time check, mainly used for steer torque rate limiter
static bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = MAX(val_last, 0) + MAX_RT_DELTA;
int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA;
// check for violation
return max_limit_check(val, highest_val, lowest_val);
}
// interp function that holds extreme values
static float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
float ret = xy.y[size - 1]; // default output is last point
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
ret = xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < (size - 1); i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed to be monotonic
dx = MAX(dx, 0.0001);
ret = (dy * (x - x0) / dx) + y0;
break;
}
}
}
return ret;
}
int ROUND(float val) {
return val + ((val > 0.0) ? 0.5 : -0.5);
}
// Safety checks for longitudinal actuation
bool longitudinal_accel_checks(int desired_accel, const LongitudinalLimits limits) {
bool accel_valid = get_longitudinal_allowed() && !max_limit_check(desired_accel, limits.max_accel, limits.min_accel);
bool accel_inactive = desired_accel == limits.inactive_accel;
return !(accel_valid || accel_inactive);
}
bool longitudinal_speed_checks(int desired_speed, const LongitudinalLimits limits) {
return !get_longitudinal_allowed() && (desired_speed != limits.inactive_speed);
}
bool longitudinal_transmission_rpm_checks(int desired_transmission_rpm, const LongitudinalLimits limits) {
bool transmission_rpm_valid = get_longitudinal_allowed() && !max_limit_check(desired_transmission_rpm, limits.max_transmission_rpm, limits.min_transmission_rpm);
bool transmission_rpm_inactive = desired_transmission_rpm == limits.inactive_transmission_rpm;
return !(transmission_rpm_valid || transmission_rpm_inactive);
}
bool longitudinal_gas_checks(int desired_gas, const LongitudinalLimits limits) {
bool gas_valid = get_longitudinal_allowed() && !max_limit_check(desired_gas, limits.max_gas, limits.min_gas);
bool gas_inactive = desired_gas == limits.inactive_gas;
return !(gas_valid || gas_inactive);
}
bool longitudinal_brake_checks(int desired_brake, const LongitudinalLimits limits) {
bool violation = false;
violation |= !get_longitudinal_allowed() && (desired_brake != 0);
violation |= desired_brake > limits.max_brake;
return violation;
}
// Safety checks for torque-based steering commands
bool steer_torque_cmd_checks(int desired_torque, int steer_req, const SteeringLimits limits) {
bool violation = false;
uint32_t ts = microsecond_timer_get();
if (controls_allowed) {
// *** global torque limit check ***
violation |= max_limit_check(desired_torque, limits.max_steer, -limits.max_steer);
// *** torque rate limit check ***
if (limits.type == TorqueDriverLimited) {
violation |= driver_limit_check(desired_torque, desired_torque_last, &torque_driver,
limits.max_steer, limits.max_rate_up, limits.max_rate_down,
limits.driver_torque_allowance, limits.driver_torque_factor);
} else {
violation |= dist_to_meas_check(desired_torque, desired_torque_last, &torque_meas,
limits.max_rate_up, limits.max_rate_down, limits.max_torque_error);
}
desired_torque_last = desired_torque;
// *** torque real time rate limit check ***
violation |= rt_rate_limit_check(desired_torque, rt_torque_last, limits.max_rt_delta);
// every RT_INTERVAL set the new limits
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_torque_check_last);
if (ts_elapsed > limits.max_rt_interval) {
rt_torque_last = desired_torque;
ts_torque_check_last = ts;
}
}
// no torque if controls is not allowed
if (!controls_allowed && (desired_torque != 0)) {
violation = true;
}
// certain safety modes set their steer request bit low for one or more frame at a
// predefined max frequency to avoid steering faults in certain situations
bool steer_req_mismatch = (steer_req == 0) && (desired_torque != 0);
if (!limits.has_steer_req_tolerance) {
if (steer_req_mismatch) {
violation = true;
}
} else {
if (steer_req_mismatch) {
if (invalid_steer_req_count == 0) {
// disallow torque cut if not enough recent matching steer_req messages
if (valid_steer_req_count < limits.min_valid_request_frames) {
violation = true;
}
// or we've cut torque too recently in time
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_steer_req_mismatch_last);
if (ts_elapsed < limits.min_valid_request_rt_interval) {
violation = true;
}
} else {
// or we're cutting more frames consecutively than allowed
if (invalid_steer_req_count >= limits.max_invalid_request_frames) {
violation = true;
}
}
valid_steer_req_count = 0;
ts_steer_req_mismatch_last = ts;
invalid_steer_req_count = MIN(invalid_steer_req_count + 1, limits.max_invalid_request_frames);
} else {
valid_steer_req_count = MIN(valid_steer_req_count + 1, limits.min_valid_request_frames);
invalid_steer_req_count = 0;
}
}
// reset to 0 if either controls is not allowed or there's a violation
if (violation || !controls_allowed) {
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_torque_check_last = ts;
ts_steer_req_mismatch_last = ts;
}
return violation;
}
// Safety checks for angle-based steering commands
bool steer_angle_cmd_checks(int desired_angle, bool steer_control_enabled, const SteeringLimits limits) {
bool violation = false;
if (controls_allowed && steer_control_enabled) {
// convert floating point angle rate limits to integers in the scale of the desired angle on CAN,
// add 1 to not false trigger the violation. also fudge the speed by 1 m/s so rate limits are
// always slightly above openpilot's in case we read an updated speed in between angle commands
// TODO: this speed fudge can be much lower, look at data to determine the lowest reasonable offset
int delta_angle_up = (interpolate(limits.angle_rate_up_lookup, (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.) * limits.angle_deg_to_can) + 1.;
int delta_angle_down = (interpolate(limits.angle_rate_down_lookup, (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.) * limits.angle_deg_to_can) + 1.;
// allow down limits at zero since small floats will be rounded to 0
int highest_desired_angle = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up : delta_angle_down);
int lowest_desired_angle = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down : delta_angle_up);
// check that commanded angle value isn't too far from measured, used to limit torque for some safety modes
// ensure we start moving in direction of meas while respecting rate limits if error is exceeded
if (limits.enforce_angle_error && ((vehicle_speed.values[0] / VEHICLE_SPEED_FACTOR) > limits.angle_error_min_speed)) {
// the rate limits above are liberally above openpilot's to avoid false positives.
// likewise, allow a lower rate for moving towards meas when error is exceeded
int delta_angle_up_lower = interpolate(limits.angle_rate_up_lookup, (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.) * limits.angle_deg_to_can;
int delta_angle_down_lower = interpolate(limits.angle_rate_down_lookup, (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.) * limits.angle_deg_to_can;
int highest_desired_angle_lower = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up_lower : delta_angle_down_lower);
int lowest_desired_angle_lower = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down_lower : delta_angle_up_lower);
lowest_desired_angle = MIN(MAX(lowest_desired_angle, angle_meas.min - limits.max_angle_error - 1), highest_desired_angle_lower);
highest_desired_angle = MAX(MIN(highest_desired_angle, angle_meas.max + limits.max_angle_error + 1), lowest_desired_angle_lower);
// don't enforce above the max steer
lowest_desired_angle = CLAMP(lowest_desired_angle, -limits.max_steer, limits.max_steer);
highest_desired_angle = CLAMP(highest_desired_angle, -limits.max_steer, limits.max_steer);
}
// check for violation;
violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle);
}
desired_angle_last = desired_angle;
// Angle should either be 0 or same as current angle while not steering
if (!steer_control_enabled) {
violation |= (limits.inactive_angle_is_zero ? (desired_angle != 0) :
max_limit_check(desired_angle, angle_meas.max + 1, angle_meas.min - 1));
}
// No angle control allowed when controls are not allowed
violation |= !controls_allowed && steer_control_enabled;
return violation;
}
void pcm_cruise_check(bool cruise_engaged) {
// Enter controls on rising edge of stock ACC, exit controls if stock ACC disengages
if (!cruise_engaged) {
controls_allowed = false;
}
if (cruise_engaged && !cruise_engaged_prev) {
controls_allowed = true;
}
cruise_engaged_prev = cruise_engaged;
}