#include "safety_declarations.h" // include the safety policies. #include "safety/safety_defaults.h" #include "safety/safety_honda.h" #include "safety/safety_toyota.h" #include "safety/safety_tesla.h" #include "safety/safety_gm.h" #include "safety/safety_ford.h" #include "safety/safety_hyundai.h" #include "safety/safety_chrysler.h" #include "safety/safety_subaru.h" #include "safety/safety_mazda.h" #include "safety/safety_nissan.h" #include "safety/safety_volkswagen_mqb.h" #include "safety/safety_volkswagen_pq.h" #include "safety/safety_elm327.h" // from cereal.car.CarParams.SafetyModel #define SAFETY_SILENT 0U #define SAFETY_HONDA_NIDEC 1U #define SAFETY_TOYOTA 2U #define SAFETY_ELM327 3U #define SAFETY_GM 4U #define SAFETY_HONDA_BOSCH_GIRAFFE 5U #define SAFETY_FORD 6U #define SAFETY_HYUNDAI 8U #define SAFETY_CHRYSLER 9U #define SAFETY_TESLA 10U #define SAFETY_SUBARU 11U #define SAFETY_MAZDA 13U #define SAFETY_NISSAN 14U #define SAFETY_VOLKSWAGEN_MQB 15U #define SAFETY_ALLOUTPUT 17U #define SAFETY_GM_ASCM 18U #define SAFETY_NOOUTPUT 19U #define SAFETY_HONDA_BOSCH 20U #define SAFETY_VOLKSWAGEN_PQ 21U #define SAFETY_SUBARU_LEGACY 22U #define SAFETY_HYUNDAI_LEGACY 23U #define SAFETY_HYUNDAI_COMMUNITY 24U #define SAFETY_STELLANTIS 25U uint16_t current_safety_mode = SAFETY_SILENT; int16_t current_safety_param = 0; const safety_hooks *current_hooks = &nooutput_hooks; const addr_checks *current_rx_checks = &default_rx_checks; int safety_rx_hook(CANPacket_t *to_push) { return current_hooks->rx(to_push); } int safety_tx_hook(CANPacket_t *to_send) { return (relay_malfunction ? -1 : current_hooks->tx(to_send)); } int safety_tx_lin_hook(int lin_num, uint8_t *data, int len) { return current_hooks->tx_lin(lin_num, data, len); } int safety_fwd_hook(int bus_num, CANPacket_t *to_fwd) { return (relay_malfunction ? -1 : current_hooks->fwd(bus_num, to_fwd)); } // Given a CRC-8 poly, generate a static lookup table to use with a fast CRC-8 // algorithm. Called at init time for safety modes using CRC-8. void gen_crc_lookup_table(uint8_t poly, uint8_t crc_lut[]) { for (int i = 0; i < 256; i++) { uint8_t crc = i; for (int j = 0; j < 8; j++) { if ((crc & 0x80U) != 0U) crc = (uint8_t)((crc << 1) ^ poly); else crc <<= 1; } crc_lut[i] = crc; } } bool msg_allowed(CANPacket_t *to_send, const CanMsg msg_list[], int len) { int addr = GET_ADDR(to_send); int bus = GET_BUS(to_send); int length = GET_LEN(to_send); bool allowed = false; for (int i = 0; i < len; i++) { if ((addr == msg_list[i].addr) && (bus == msg_list[i].bus) && (length == msg_list[i].len)) { allowed = true; break; } } return allowed; } // compute the time elapsed (in microseconds) from 2 counter samples // case where ts < ts_last is ok: overflow is properly re-casted into uint32_t uint32_t get_ts_elapsed(uint32_t ts, uint32_t ts_last) { return ts - ts_last; } int get_addr_check_index(CANPacket_t *to_push, AddrCheckStruct addr_list[], const int len) { int bus = GET_BUS(to_push); int addr = GET_ADDR(to_push); int length = GET_LEN(to_push); int index = -1; for (int i = 0; i < len; i++) { // if multiple msgs are allowed, determine which one is present on the bus if (!addr_list[i].msg_seen) { for (uint8_t j = 0U; addr_list[i].msg[j].addr != 0; j++) { if ((addr == addr_list[i].msg[j].addr) && (bus == addr_list[i].msg[j].bus) && (length == addr_list[i].msg[j].len)) { addr_list[i].index = j; addr_list[i].msg_seen = true; break; } } } int idx = addr_list[i].index; if ((addr == addr_list[i].msg[idx].addr) && (bus == addr_list[i].msg[idx].bus) && (length == addr_list[i].msg[idx].len)) { index = i; break; } } return index; } // 1Hz safety function called by main. Now just a check for lagging safety messages void safety_tick(const addr_checks *rx_checks) { uint32_t ts = microsecond_timer_get(); if (rx_checks != NULL) { for (int i=0; i < rx_checks->len; i++) { uint32_t elapsed_time = get_ts_elapsed(ts, rx_checks->check[i].last_timestamp); // lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep. // Quite conservative to not risk false triggers. // 2s of lag is worse case, since the function is called at 1Hz bool lagging = elapsed_time > MAX(rx_checks->check[i].msg[rx_checks->check[i].index].expected_timestep * MAX_MISSED_MSGS, 1e6); rx_checks->check[i].lagging = lagging; if (lagging) { controls_allowed = 0; } } } } void update_counter(AddrCheckStruct addr_list[], int index, uint8_t counter) { if (index != -1) { uint8_t expected_counter = (addr_list[index].last_counter + 1U) % (addr_list[index].msg[addr_list[index].index].max_counter + 1U); addr_list[index].wrong_counters += (expected_counter == counter) ? -1 : 1; addr_list[index].wrong_counters = MAX(MIN(addr_list[index].wrong_counters, MAX_WRONG_COUNTERS), 0); addr_list[index].last_counter = counter; } } bool is_msg_valid(AddrCheckStruct addr_list[], int index) { bool valid = true; if (index != -1) { if ((!addr_list[index].valid_checksum) || (addr_list[index].wrong_counters >= MAX_WRONG_COUNTERS)) { valid = false; controls_allowed = 0; } } return valid; } void update_addr_timestamp(AddrCheckStruct addr_list[], int index) { if (index != -1) { uint32_t ts = microsecond_timer_get(); addr_list[index].last_timestamp = ts; } } bool addr_safety_check(CANPacket_t *to_push, const addr_checks *rx_checks, uint8_t (*get_checksum)(CANPacket_t *to_push), uint8_t (*compute_checksum)(CANPacket_t *to_push), uint8_t (*get_counter)(CANPacket_t *to_push)) { int index = get_addr_check_index(to_push, rx_checks->check, rx_checks->len); update_addr_timestamp(rx_checks->check, index); if (index != -1) { // checksum check if ((get_checksum != NULL) && (compute_checksum != NULL) && rx_checks->check[index].msg[rx_checks->check[index].index].check_checksum) { uint8_t checksum = get_checksum(to_push); uint8_t checksum_comp = compute_checksum(to_push); rx_checks->check[index].valid_checksum = checksum_comp == checksum; } else { rx_checks->check[index].valid_checksum = true; } // counter check (max_counter == 0 means skip check) if ((get_counter != NULL) && (rx_checks->check[index].msg[rx_checks->check[index].index].max_counter > 0U)) { uint8_t counter = get_counter(to_push); update_counter(rx_checks->check, index, counter); } else { rx_checks->check[index].wrong_counters = 0U; } } return is_msg_valid(rx_checks->check, index); } void generic_rx_checks(bool stock_ecu_detected) { // exit controls on rising edge of gas press if (gas_pressed && !gas_pressed_prev && !(unsafe_mode & UNSAFE_DISABLE_DISENGAGE_ON_GAS)) { controls_allowed = 0; } gas_pressed_prev = gas_pressed; // exit controls on rising edge of brake press if (brake_pressed && (!brake_pressed_prev || vehicle_moving)) { controls_allowed = 0; } brake_pressed_prev = brake_pressed; // check if stock ECU is on bus broken by car harness if ((safety_mode_cnt > RELAY_TRNS_TIMEOUT) && stock_ecu_detected) { relay_malfunction_set(); } } void relay_malfunction_set(void) { relay_malfunction = true; fault_occurred(FAULT_RELAY_MALFUNCTION); } void relay_malfunction_reset(void) { relay_malfunction = false; fault_recovered(FAULT_RELAY_MALFUNCTION); } typedef struct { uint16_t id; const safety_hooks *hooks; } safety_hook_config; const safety_hook_config safety_hook_registry[] = { {SAFETY_SILENT, &nooutput_hooks}, {SAFETY_HONDA_NIDEC, &honda_nidec_hooks}, {SAFETY_TOYOTA, &toyota_hooks}, {SAFETY_ELM327, &elm327_hooks}, {SAFETY_GM, &gm_hooks}, {SAFETY_HONDA_BOSCH, &honda_bosch_hooks}, {SAFETY_HYUNDAI, &hyundai_hooks}, {SAFETY_CHRYSLER, &chrysler_hooks}, {SAFETY_SUBARU, &subaru_hooks}, {SAFETY_VOLKSWAGEN_MQB, &volkswagen_mqb_hooks}, {SAFETY_NISSAN, &nissan_hooks}, {SAFETY_NOOUTPUT, &nooutput_hooks}, {SAFETY_HYUNDAI_LEGACY, &hyundai_legacy_hooks}, {SAFETY_MAZDA, &mazda_hooks}, #ifdef ALLOW_DEBUG {SAFETY_TESLA, &tesla_hooks}, {SAFETY_SUBARU_LEGACY, &subaru_legacy_hooks}, {SAFETY_VOLKSWAGEN_PQ, &volkswagen_pq_hooks}, {SAFETY_ALLOUTPUT, &alloutput_hooks}, {SAFETY_FORD, &ford_hooks}, #endif }; int set_safety_hooks(uint16_t mode, int16_t param) { // reset state set by safety mode safety_mode_cnt = 0U; relay_malfunction = false; gas_interceptor_detected = false; gas_interceptor_prev = 0; gas_pressed = false; gas_pressed_prev = false; brake_pressed = false; brake_pressed_prev = false; cruise_engaged_prev = false; vehicle_speed = 0; vehicle_moving = false; acc_main_on = false; cruise_button_prev = 0; desired_torque_last = 0; rt_torque_last = 0; ts_angle_last = 0; desired_angle_last = 0; ts_last = 0; torque_meas.max = 0; torque_meas.max = 0; torque_driver.min = 0; torque_driver.max = 0; angle_meas.min = 0; angle_meas.max = 0; int set_status = -1; // not set int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config); for (int i = 0; i < hook_config_count; i++) { if (safety_hook_registry[i].id == mode) { current_hooks = safety_hook_registry[i].hooks; current_safety_mode = mode; current_safety_param = param; set_status = 0; // set } } if ((set_status == 0) && (current_hooks->init != NULL)) { current_rx_checks = current_hooks->init(param); // reset message index and seen flags in addr struct for (int j = 0; j < current_rx_checks->len; j++) { current_rx_checks->check[j].index = 0; current_rx_checks->check[j].msg_seen = false; } } return set_status; } // convert a trimmed integer to signed 32 bit int int to_signed(int d, int bits) { int d_signed = d; if (d >= (1 << MAX((bits - 1), 0))) { d_signed = d - (1 << MAX(bits, 0)); } return d_signed; } // given a new sample, update the smaple_t struct void update_sample(struct sample_t *sample, int sample_new) { int sample_size = sizeof(sample->values) / sizeof(sample->values[0]); for (int i = sample_size - 1; i > 0; i--) { sample->values[i] = sample->values[i-1]; } sample->values[0] = sample_new; // get the minimum and maximum measured samples sample->min = sample->values[0]; sample->max = sample->values[0]; for (int i = 1; i < sample_size; i++) { if (sample->values[i] < sample->min) { sample->min = sample->values[i]; } if (sample->values[i] > sample->max) { sample->max = sample->values[i]; } } } bool max_limit_check(int val, const int MAX_VAL, const int MIN_VAL) { return (val > MAX_VAL) || (val < MIN_VAL); } // check that commanded value isn't too far from measured bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) { // *** val rate limit check *** int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP; int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP; // if we've exceeded the meas val, we must start moving toward 0 int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR)); int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR)); // check for violation return (val < lowest_allowed) || (val > highest_allowed); } // check that commanded value isn't fighting against driver bool driver_limit_check(int val, int val_last, struct sample_t *val_driver, const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ALLOWANCE, const int DRIVER_FACTOR) { int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP; int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP; int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR; int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR; // if we've exceeded the applied torque, we must start moving toward 0 int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(driver_max_limit, 0))); int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(driver_min_limit, 0))); // check for violation return (val < lowest_allowed) || (val > highest_allowed); } // real time check, mainly used for steer torque rate limiter bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) { // *** torque real time rate limit check *** int highest_val = MAX(val_last, 0) + MAX_RT_DELTA; int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA; // check for violation return (val < lowest_val) || (val > highest_val); } // interp function that holds extreme values float interpolate(struct lookup_t xy, float x) { int size = sizeof(xy.x) / sizeof(xy.x[0]); float ret = xy.y[size - 1]; // default output is last point // x is lower than the first point in the x array. Return the first point if (x <= xy.x[0]) { ret = xy.y[0]; } else { // find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp for (int i=0; i < (size - 1); i++) { if (x < xy.x[i+1]) { float x0 = xy.x[i]; float y0 = xy.y[i]; float dx = xy.x[i+1] - x0; float dy = xy.y[i+1] - y0; // dx should not be zero as xy.x is supposed to be monotonic if (dx <= 0.) { dx = 0.0001; } ret = (dy * (x - x0) / dx) + y0; break; } } } return ret; }