// include first, needed by safety policies #include "safety_declarations.h" // Include the actual safety policies. #include "safety/safety_defaults.h" #include "safety/safety_honda.h" #include "safety/safety_toyota.h" #include "safety/safety_toyota_ipas.h" #include "safety/safety_tesla.h" #include "safety/safety_gm_ascm.h" #include "safety/safety_gm.h" #include "safety/safety_ford.h" #include "safety/safety_cadillac.h" #include "safety/safety_hyundai.h" #include "safety/safety_chrysler.h" #include "safety/safety_subaru.h" #include "safety/safety_elm327.h" const safety_hooks *current_hooks = &nooutput_hooks; void safety_rx_hook(CAN_FIFOMailBox_TypeDef *to_push){ current_hooks->rx(to_push); } int safety_tx_hook(CAN_FIFOMailBox_TypeDef *to_send) { return current_hooks->tx(to_send); } int safety_tx_lin_hook(int lin_num, uint8_t *data, int len){ return current_hooks->tx_lin(lin_num, data, len); } // -1 = Disabled (Use GPIO to determine ignition) // 0 = Off (not started) // 1 = On (started) int safety_ignition_hook() { return current_hooks->ignition(); } int safety_fwd_hook(int bus_num, CAN_FIFOMailBox_TypeDef *to_fwd) { return current_hooks->fwd(bus_num, to_fwd); } typedef struct { uint16_t id; const safety_hooks *hooks; } safety_hook_config; #define SAFETY_NOOUTPUT 0 #define SAFETY_HONDA 1 #define SAFETY_TOYOTA 2 #define SAFETY_GM 3 #define SAFETY_HONDA_BOSCH 4 #define SAFETY_FORD 5 #define SAFETY_CADILLAC 6 #define SAFETY_HYUNDAI 7 #define SAFETY_TESLA 8 #define SAFETY_CHRYSLER 9 #define SAFETY_SUBARU 10 #define SAFETY_GM_ASCM 0x1334 #define SAFETY_TOYOTA_IPAS 0x1335 #define SAFETY_ALLOUTPUT 0x1337 #define SAFETY_ELM327 0xE327 const safety_hook_config safety_hook_registry[] = { {SAFETY_NOOUTPUT, &nooutput_hooks}, {SAFETY_HONDA, &honda_hooks}, {SAFETY_HONDA_BOSCH, &honda_bosch_hooks}, {SAFETY_TOYOTA, &toyota_hooks}, {SAFETY_GM, &gm_hooks}, {SAFETY_FORD, &ford_hooks}, {SAFETY_CADILLAC, &cadillac_hooks}, {SAFETY_HYUNDAI, &hyundai_hooks}, {SAFETY_CHRYSLER, &chrysler_hooks}, {SAFETY_SUBARU, &subaru_hooks}, {SAFETY_TOYOTA_IPAS, &toyota_ipas_hooks}, {SAFETY_GM_ASCM, &gm_ascm_hooks}, {SAFETY_TESLA, &tesla_hooks}, {SAFETY_ALLOUTPUT, &alloutput_hooks}, {SAFETY_ELM327, &elm327_hooks}, }; int safety_set_mode(uint16_t mode, int16_t param) { int set_status = -1; // not set int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config); for (int i = 0; i < hook_config_count; i++) { if (safety_hook_registry[i].id == mode) { current_hooks = safety_hook_registry[i].hooks; set_status = 0; // set break; } } if ((set_status == 0) && (current_hooks->init != NULL)) { current_hooks->init(param); } return set_status; } // compute the time elapsed (in microseconds) from 2 counter samples // case where ts < ts_last is ok: overflow is properly re-casted into uint32_t uint32_t get_ts_elapsed(uint32_t ts, uint32_t ts_last) { return ts - ts_last; } // convert a trimmed integer to signed 32 bit int int to_signed(int d, int bits) { int d_signed = d; if (d >= (1 << max((bits - 1), 0))) { d_signed = d - (1 << max(bits, 0)); } return d_signed; } // given a new sample, update the smaple_t struct void update_sample(struct sample_t *sample, int sample_new) { int sample_size = sizeof(sample->values) / sizeof(sample->values[0]); for (int i = sample_size - 1; i > 0; i--) { sample->values[i] = sample->values[i-1]; } sample->values[0] = sample_new; // get the minimum and maximum measured samples sample->min = sample->values[0]; sample->max = sample->values[0]; for (int i = 1; i < sample_size; i++) { if (sample->values[i] < sample->min) { sample->min = sample->values[i]; } if (sample->values[i] > sample->max) { sample->max = sample->values[i]; } } } bool max_limit_check(int val, const int MAX, const int MIN) { return (val > MAX) || (val < MIN); } // check that commanded value isn't too far from measured bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) { // *** val rate limit check *** int highest_allowed_val = max(val_last, 0) + MAX_RATE_UP; int lowest_allowed_val = min(val_last, 0) - MAX_RATE_UP; // if we've exceeded the meas val, we must start moving toward 0 highest_allowed_val = min(highest_allowed_val, max(val_last - MAX_RATE_DOWN, max(val_meas->max, 0) + MAX_ERROR)); lowest_allowed_val = max(lowest_allowed_val, min(val_last + MAX_RATE_DOWN, min(val_meas->min, 0) - MAX_ERROR)); // check for violation return (val < lowest_allowed_val) || (val > highest_allowed_val); } // check that commanded value isn't fighting against driver bool driver_limit_check(int val, int val_last, struct sample_t *val_driver, const int MAX, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ALLOWANCE, const int DRIVER_FACTOR) { int highest_allowed = max(val_last, 0) + MAX_RATE_UP; int lowest_allowed = min(val_last, 0) - MAX_RATE_UP; int driver_max_limit = MAX + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR; int driver_min_limit = -MAX + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR; // if we've exceeded the applied torque, we must start moving toward 0 highest_allowed = min(highest_allowed, max(val_last - MAX_RATE_DOWN, max(driver_max_limit, 0))); lowest_allowed = max(lowest_allowed, min(val_last + MAX_RATE_DOWN, min(driver_min_limit, 0))); // check for violation return (val < lowest_allowed) || (val > highest_allowed); } // real time check, mainly used for steer torque rate limiter bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) { // *** torque real time rate limit check *** int highest_val = max(val_last, 0) + MAX_RT_DELTA; int lowest_val = min(val_last, 0) - MAX_RT_DELTA; // check for violation return (val < lowest_val) || (val > highest_val); } // interp function that holds extreme values float interpolate(struct lookup_t xy, float x) { int size = sizeof(xy.x) / sizeof(xy.x[0]); float ret = xy.y[size - 1]; // default output is last point // x is lower than the first point in the x array. Return the first point if (x <= xy.x[0]) { ret = xy.y[0]; } else { // find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp for (int i=0; i < (size - 1); i++) { if (x < xy.x[i+1]) { float x0 = xy.x[i]; float y0 = xy.y[i]; float dx = xy.x[i+1] - x0; float dy = xy.y[i+1] - y0; // dx should not be zero as xy.x is supposed ot be monotonic if (dx <= 0.) { dx = 0.0001; } ret = (dy * (x - x0) / dx) + y0; break; } } } return ret; }