openpilot1/selfdrive/locationd/locationd.cc

751 lines
35 KiB
C++

#include "selfdrive/locationd/locationd.h"
#include <sys/time.h>
#include <sys/resource.h>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace EKFS;
using namespace Eigen;
ExitHandler do_exit;
const double ACCEL_SANITY_CHECK = 100.0; // m/s^2
const double ROTATION_SANITY_CHECK = 10.0; // rad/s
const double TRANS_SANITY_CHECK = 200.0; // m/s
const double CALIB_RPY_SANITY_CHECK = 0.5; // rad (+- 30 deg)
const double ALTITUDE_SANITY_CHECK = 10000; // m
const double MIN_STD_SANITY_CHECK = 1e-5; // m or rad
const double VALID_TIME_SINCE_RESET = 1.0; // s
const double VALID_POS_STD = 50.0; // m
const double MAX_RESET_TRACKER = 5.0;
const double SANE_GPS_UNCERTAINTY = 1500.0; // m
const double INPUT_INVALID_THRESHOLD = 0.5; // same as reset tracker
const double RESET_TRACKER_DECAY = 0.99995;
const double DECAY = 0.9993; // ~10 secs to resume after a bad input
const double MAX_FILTER_REWIND_TIME = 0.8; // s
const double YAWRATE_CROSS_ERR_CHECK_FACTOR = 30;
// TODO: GPS sensor time offsets are empirically calculated
// They should be replaced with synced time from a real clock
const double GPS_QUECTEL_SENSOR_TIME_OFFSET = 0.630; // s
const double GPS_UBLOX_SENSOR_TIME_OFFSET = 0.095; // s
const float GPS_POS_STD_THRESHOLD = 50.0;
const float GPS_VEL_STD_THRESHOLD = 5.0;
const float GPS_POS_ERROR_RESET_THRESHOLD = 300.0;
const float GPS_POS_STD_RESET_THRESHOLD = 2.0;
const float GPS_VEL_STD_RESET_THRESHOLD = 0.5;
const float GPS_ORIENTATION_ERROR_RESET_THRESHOLD = 1.0;
const int GPS_ORIENTATION_ERROR_RESET_CNT = 3;
const bool DEBUG = getenv("DEBUG") != nullptr && std::string(getenv("DEBUG")) != "0";
static VectorXd floatlist2vector(const capnp::List<float, capnp::Kind::PRIMITIVE>::Reader& floatlist) {
VectorXd res(floatlist.size());
for (int i = 0; i < floatlist.size(); i++) {
res[i] = floatlist[i];
}
return res;
}
static Vector4d quat2vector(const Quaterniond& quat) {
return Vector4d(quat.w(), quat.x(), quat.y(), quat.z());
}
static Quaterniond vector2quat(const VectorXd& vec) {
return Quaterniond(vec(0), vec(1), vec(2), vec(3));
}
static void init_measurement(cereal::LiveLocationKalman::Measurement::Builder meas, const VectorXd& val, const VectorXd& std, bool valid) {
meas.setValue(kj::arrayPtr(val.data(), val.size()));
meas.setStd(kj::arrayPtr(std.data(), std.size()));
meas.setValid(valid);
}
static MatrixXdr rotate_cov(const MatrixXdr& rot_matrix, const MatrixXdr& cov_in) {
// To rotate a covariance matrix, the cov matrix needs to multiplied left and right by the transform matrix
return ((rot_matrix * cov_in) * rot_matrix.transpose());
}
static VectorXd rotate_std(const MatrixXdr& rot_matrix, const VectorXd& std_in) {
// Stds cannot be rotated like values, only covariances can be rotated
return rotate_cov(rot_matrix, std_in.array().square().matrix().asDiagonal()).diagonal().array().sqrt();
}
Localizer::Localizer(LocalizerGnssSource gnss_source) {
this->kf = std::make_unique<LiveKalman>();
this->reset_kalman();
this->calib = Vector3d(0.0, 0.0, 0.0);
this->device_from_calib = MatrixXdr::Identity(3, 3);
this->calib_from_device = MatrixXdr::Identity(3, 3);
for (int i = 0; i < POSENET_STD_HIST_HALF * 2; i++) {
this->posenet_stds.push_back(10.0);
}
VectorXd ecef_pos = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
this->converter = std::make_unique<LocalCoord>((ECEF) { .x = ecef_pos[0], .y = ecef_pos[1], .z = ecef_pos[2] });
this->configure_gnss_source(gnss_source);
}
void Localizer::build_live_location(cereal::LiveLocationKalman::Builder& fix) {
VectorXd predicted_state = this->kf->get_x();
MatrixXdr predicted_cov = this->kf->get_P();
VectorXd predicted_std = predicted_cov.diagonal().array().sqrt();
VectorXd fix_ecef = predicted_state.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) };
VectorXd fix_ecef_std = predicted_std.segment<STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START);
VectorXd vel_ecef = predicted_state.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START);
VectorXd vel_ecef_std = predicted_std.segment<STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START);
VectorXd fix_pos_geo_vec = this->get_position_geodetic();
VectorXd orientation_ecef = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
VectorXd orientation_ecef_std = predicted_std.segment<STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START);
MatrixXdr orientation_ecef_cov = predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
MatrixXdr device_from_ecef = euler2rot(orientation_ecef).transpose();
VectorXd calibrated_orientation_ecef = rot2euler((this->calib_from_device * device_from_ecef).transpose());
VectorXd acc_calib = this->calib_from_device * predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START);
MatrixXdr acc_calib_cov = predicted_cov.block<STATE_ACCELERATION_ERR_LEN, STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START, STATE_ACCELERATION_ERR_START);
VectorXd acc_calib_std = rotate_cov(this->calib_from_device, acc_calib_cov).diagonal().array().sqrt();
VectorXd ang_vel_calib = this->calib_from_device * predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START);
MatrixXdr vel_angular_cov = predicted_cov.block<STATE_ANGULAR_VELOCITY_ERR_LEN, STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START);
VectorXd ang_vel_calib_std = rotate_cov(this->calib_from_device, vel_angular_cov).diagonal().array().sqrt();
VectorXd vel_device = device_from_ecef * vel_ecef;
VectorXd device_from_ecef_eul = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START))).transpose();
MatrixXdr condensed_cov(STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN);
condensed_cov.topLeftCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
condensed_cov.topRightCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_VELOCITY_ERR_START);
condensed_cov.bottomRightCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START);
condensed_cov.bottomLeftCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() =
predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
VectorXd H_input(device_from_ecef_eul.size() + vel_ecef.size());
H_input << device_from_ecef_eul, vel_ecef;
MatrixXdr HH = this->kf->H(H_input);
MatrixXdr vel_device_cov = (HH * condensed_cov) * HH.transpose();
VectorXd vel_device_std = vel_device_cov.diagonal().array().sqrt();
VectorXd vel_calib = this->calib_from_device * vel_device;
VectorXd vel_calib_std = rotate_cov(this->calib_from_device, vel_device_cov).diagonal().array().sqrt();
VectorXd orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, orientation_ecef);
VectorXd orientation_ned_std = rotate_cov(this->converter->ecef2ned_matrix, orientation_ecef_cov).diagonal().array().sqrt();
VectorXd calibrated_orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, calibrated_orientation_ecef);
VectorXd nextfix_ecef = fix_ecef + vel_ecef;
VectorXd ned_vel = this->converter->ecef2ned((ECEF) { .x = nextfix_ecef(0), .y = nextfix_ecef(1), .z = nextfix_ecef(2) }).to_vector() - converter->ecef2ned(fix_ecef_ecef).to_vector();
VectorXd accDevice = predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START);
VectorXd accDeviceErr = predicted_std.segment<STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START);
VectorXd angVelocityDevice = predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START);
VectorXd angVelocityDeviceErr = predicted_std.segment<STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START);
Vector3d nans = Vector3d(NAN, NAN, NAN);
// TODO fill in NED and Calibrated stds
// write measurements to msg
init_measurement(fix.initPositionGeodetic(), fix_pos_geo_vec, nans, this->gps_mode);
init_measurement(fix.initPositionECEF(), fix_ecef, fix_ecef_std, this->gps_mode);
init_measurement(fix.initVelocityECEF(), vel_ecef, vel_ecef_std, this->gps_mode);
init_measurement(fix.initVelocityNED(), ned_vel, nans, this->gps_mode);
init_measurement(fix.initVelocityDevice(), vel_device, vel_device_std, true);
init_measurement(fix.initAccelerationDevice(), accDevice, accDeviceErr, true);
init_measurement(fix.initOrientationECEF(), orientation_ecef, orientation_ecef_std, this->gps_mode);
init_measurement(fix.initCalibratedOrientationECEF(), calibrated_orientation_ecef, nans, this->calibrated && this->gps_mode);
init_measurement(fix.initOrientationNED(), orientation_ned, orientation_ned_std, this->gps_mode);
init_measurement(fix.initCalibratedOrientationNED(), calibrated_orientation_ned, nans, this->calibrated && this->gps_mode);
init_measurement(fix.initAngularVelocityDevice(), angVelocityDevice, angVelocityDeviceErr, true);
init_measurement(fix.initVelocityCalibrated(), vel_calib, vel_calib_std, this->calibrated);
init_measurement(fix.initAngularVelocityCalibrated(), ang_vel_calib, ang_vel_calib_std, this->calibrated);
init_measurement(fix.initAccelerationCalibrated(), acc_calib, acc_calib_std, this->calibrated);
if (DEBUG) {
init_measurement(fix.initFilterState(), predicted_state, predicted_std, true);
}
double old_mean = 0.0, new_mean = 0.0;
int i = 0;
for (double x : this->posenet_stds) {
if (i < POSENET_STD_HIST_HALF) {
old_mean += x;
} else {
new_mean += x;
}
i++;
}
old_mean /= POSENET_STD_HIST_HALF;
new_mean /= POSENET_STD_HIST_HALF;
// experimentally found these values, no false positives in 20k minutes of driving
bool std_spike = (new_mean / old_mean > 4.0 && new_mean > 7.0);
fix.setPosenetOK(!(std_spike && this->car_speed > 5.0));
fix.setDeviceStable(!this->device_fell);
fix.setExcessiveResets(this->reset_tracker > MAX_RESET_TRACKER);
fix.setTimeToFirstFix(std::isnan(this->ttff) ? -1. : this->ttff);
this->device_fell = false;
//fix.setGpsWeek(this->time.week);
//fix.setGpsTimeOfWeek(this->time.tow);
fix.setUnixTimestampMillis(this->unix_timestamp_millis);
double time_since_reset = this->kf->get_filter_time() - this->last_reset_time;
fix.setTimeSinceReset(time_since_reset);
if (fix_ecef_std.norm() < VALID_POS_STD && this->calibrated && time_since_reset > VALID_TIME_SINCE_RESET) {
fix.setStatus(cereal::LiveLocationKalman::Status::VALID);
} else if (fix_ecef_std.norm() < VALID_POS_STD && time_since_reset > VALID_TIME_SINCE_RESET) {
fix.setStatus(cereal::LiveLocationKalman::Status::UNCALIBRATED);
} else {
fix.setStatus(cereal::LiveLocationKalman::Status::UNINITIALIZED);
}
}
VectorXd Localizer::get_position_geodetic() {
VectorXd fix_ecef = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) };
Geodetic fix_pos_geo = ecef2geodetic(fix_ecef_ecef);
return Vector3d(fix_pos_geo.lat, fix_pos_geo.lon, fix_pos_geo.alt);
}
VectorXd Localizer::get_state() {
return this->kf->get_x();
}
VectorXd Localizer::get_stdev() {
return this->kf->get_P().diagonal().array().sqrt();
}
bool Localizer::are_inputs_ok() {
return this->critical_services_valid(this->observation_values_invalid) && !this->observation_timings_invalid;
}
void Localizer::observation_timings_invalid_reset(){
this->observation_timings_invalid = false;
}
void Localizer::handle_sensor(double current_time, const cereal::SensorEventData::Reader& log) {
// TODO does not yet account for double sensor readings in the log
// Ignore empty readings (e.g. in case the magnetometer had no data ready)
if (log.getTimestamp() == 0) {
return;
}
double sensor_time = 1e-9 * log.getTimestamp();
// sensor time and log time should be close
if (std::abs(current_time - sensor_time) > 0.1) {
LOGE("Sensor reading ignored, sensor timestamp more than 100ms off from log time");
this->observation_timings_invalid = true;
return;
} else if (!this->is_timestamp_valid(sensor_time)) {
this->observation_timings_invalid = true;
return;
}
// TODO: handle messages from two IMUs at the same time
if (log.getSource() == cereal::SensorEventData::SensorSource::BMX055) {
return;
}
// Gyro Uncalibrated
if (log.getSensor() == SENSOR_GYRO_UNCALIBRATED && log.getType() == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
auto v = log.getGyroUncalibrated().getV();
auto meas = Vector3d(-v[2], -v[1], -v[0]);
VectorXd gyro_bias = this->kf->get_x().segment<STATE_GYRO_BIAS_LEN>(STATE_GYRO_BIAS_START);
float gyro_camodo_yawrate_err = std::abs((meas[2] - gyro_bias[2]) - this->camodo_yawrate_distribution[0]);
float gyro_camodo_yawrate_err_threshold = YAWRATE_CROSS_ERR_CHECK_FACTOR * this->camodo_yawrate_distribution[1];
bool gyro_valid = gyro_camodo_yawrate_err < gyro_camodo_yawrate_err_threshold;
if ((meas.norm() < ROTATION_SANITY_CHECK) && gyro_valid) {
this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_GYRO, { meas });
this->observation_values_invalid["gyroscope"] *= DECAY;
} else {
this->observation_values_invalid["gyroscope"] += 1.0;
}
}
// Accelerometer
if (log.getSensor() == SENSOR_ACCELEROMETER && log.getType() == SENSOR_TYPE_ACCELEROMETER) {
auto v = log.getAcceleration().getV();
// TODO: reduce false positives and re-enable this check
// check if device fell, estimate 10 for g
// 40m/s**2 is a good filter for falling detection, no false positives in 20k minutes of driving
// this->device_fell |= (floatlist2vector(v) - Vector3d(10.0, 0.0, 0.0)).norm() > 40.0;
auto meas = Vector3d(-v[2], -v[1], -v[0]);
if (meas.norm() < ACCEL_SANITY_CHECK) {
this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_ACCEL, { meas });
this->observation_values_invalid["accelerometer"] *= DECAY;
} else {
this->observation_values_invalid["accelerometer"] += 1.0;
}
}
}
void Localizer::input_fake_gps_observations(double current_time) {
// This is done to make sure that the error estimate of the position does not blow up
// when the filter is in no-gps mode
// Steps : first predict -> observe current obs with reasonable STD
this->kf->predict(current_time);
VectorXd current_x = this->kf->get_x();
VectorXd ecef_pos = current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
VectorXd ecef_vel = current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START);
const MatrixXdr &ecef_pos_R = this->kf->get_fake_gps_pos_cov();
const MatrixXdr &ecef_vel_R = this->kf->get_fake_gps_vel_cov();
this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
}
void Localizer::handle_gps(double current_time, const cereal::GpsLocationData::Reader& log, const double sensor_time_offset) {
bool gps_unreasonable = (Vector2d(log.getHorizontalAccuracy(), log.getVerticalAccuracy()).norm() >= SANE_GPS_UNCERTAINTY);
bool gps_accuracy_insane = ((log.getVerticalAccuracy() <= 0) || (log.getSpeedAccuracy() <= 0) || (log.getBearingAccuracyDeg() <= 0));
bool gps_lat_lng_alt_insane = ((std::abs(log.getLatitude()) > 90) || (std::abs(log.getLongitude()) > 180) || (std::abs(log.getAltitude()) > ALTITUDE_SANITY_CHECK));
bool gps_vel_insane = (floatlist2vector(log.getVNED()).norm() > TRANS_SANITY_CHECK);
if (!log.getHasFix() || gps_unreasonable || gps_accuracy_insane || gps_lat_lng_alt_insane || gps_vel_insane) {
//this->gps_valid = false;
this->determine_gps_mode(current_time);
return;
}
double sensor_time = current_time - sensor_time_offset;
// Process message
//this->gps_valid = true;
this->gps_mode = true;
Geodetic geodetic = { log.getLatitude(), log.getLongitude(), log.getAltitude() };
this->converter = std::make_unique<LocalCoord>(geodetic);
VectorXd ecef_pos = this->converter->ned2ecef({ 0.0, 0.0, 0.0 }).to_vector();
VectorXd ecef_vel = this->converter->ned2ecef({ log.getVNED()[0], log.getVNED()[1], log.getVNED()[2] }).to_vector() - ecef_pos;
float ecef_pos_std = std::sqrt(this->gps_variance_factor * std::pow(log.getHorizontalAccuracy(), 2) + this->gps_vertical_variance_factor * std::pow(log.getVerticalAccuracy(), 2));
MatrixXdr ecef_pos_R = Vector3d::Constant(std::pow(this->gps_std_factor * ecef_pos_std, 2)).asDiagonal();
MatrixXdr ecef_vel_R = Vector3d::Constant(std::pow(this->gps_std_factor * log.getSpeedAccuracy(), 2)).asDiagonal();
this->unix_timestamp_millis = log.getUnixTimestampMillis();
double gps_est_error = (this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) - ecef_pos).norm();
VectorXd orientation_ecef = quat2euler(vector2quat(this->kf->get_x().segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
VectorXd orientation_ned = ned_euler_from_ecef({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ecef);
VectorXd orientation_ned_gps = Vector3d(0.0, 0.0, DEG2RAD(log.getBearingDeg()));
VectorXd orientation_error = (orientation_ned - orientation_ned_gps).array() - M_PI;
for (int i = 0; i < orientation_error.size(); i++) {
orientation_error(i) = std::fmod(orientation_error(i), 2.0 * M_PI);
if (orientation_error(i) < 0.0) {
orientation_error(i) += 2.0 * M_PI;
}
orientation_error(i) -= M_PI;
}
VectorXd initial_pose_ecef_quat = quat2vector(euler2quat(ecef_euler_from_ned({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ned_gps)));
if (ecef_vel.norm() > 5.0 && orientation_error.norm() > 1.0) {
LOGE("Locationd vs ubloxLocation orientation difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_ORIENTATION_FROM_GPS, { initial_pose_ecef_quat });
} else if (gps_est_error > 100.0) {
LOGE("Locationd vs ubloxLocation position difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
}
this->last_gps_msg = sensor_time;
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
}
void Localizer::handle_gnss(double current_time, const cereal::GnssMeasurements::Reader& log) {
if (!log.getPositionECEF().getValid() || !log.getVelocityECEF().getValid()) {
this->determine_gps_mode(current_time);
return;
}
double sensor_time = log.getMeasTime() * 1e-9;
sensor_time -= this->gps_time_offset;
auto ecef_pos_v = log.getPositionECEF().getValue();
VectorXd ecef_pos = Vector3d(ecef_pos_v[0], ecef_pos_v[1], ecef_pos_v[2]);
// indexed at 0 cause all std values are the same MAE
auto ecef_pos_std = log.getPositionECEF().getStd()[0];
MatrixXdr ecef_pos_R = Vector3d::Constant(pow(this->gps_std_factor*ecef_pos_std, 2)).asDiagonal();
auto ecef_vel_v = log.getVelocityECEF().getValue();
VectorXd ecef_vel = Vector3d(ecef_vel_v[0], ecef_vel_v[1], ecef_vel_v[2]);
// indexed at 0 cause all std values are the same MAE
auto ecef_vel_std = log.getVelocityECEF().getStd()[0];
MatrixXdr ecef_vel_R = Vector3d::Constant(pow(this->gps_std_factor*ecef_vel_std, 2)).asDiagonal();
double gps_est_error = (this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) - ecef_pos).norm();
VectorXd orientation_ecef = quat2euler(vector2quat(this->kf->get_x().segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
VectorXd orientation_ned = ned_euler_from_ecef({ ecef_pos[0], ecef_pos[1], ecef_pos[2] }, orientation_ecef);
LocalCoord convs((ECEF){ .x = ecef_pos[0], .y = ecef_pos[1], .z = ecef_pos[2] });
ECEF next_ecef = {.x = ecef_pos[0] + ecef_vel[0], .y = ecef_pos[1] + ecef_vel[1], .z = ecef_pos[2] + ecef_vel[2]};
VectorXd ned_vel = convs.ecef2ned(next_ecef).to_vector();
double bearing_rad = atan2(ned_vel[1], ned_vel[0]);
VectorXd orientation_ned_gps = Vector3d(0.0, 0.0, bearing_rad);
VectorXd orientation_error = (orientation_ned - orientation_ned_gps).array() - M_PI;
for (int i = 0; i < orientation_error.size(); i++) {
orientation_error(i) = std::fmod(orientation_error(i), 2.0 * M_PI);
if (orientation_error(i) < 0.0) {
orientation_error(i) += 2.0 * M_PI;
}
orientation_error(i) -= M_PI;
}
VectorXd initial_pose_ecef_quat = quat2vector(euler2quat(ecef_euler_from_ned({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ned_gps)));
if (ecef_pos_std > GPS_POS_STD_THRESHOLD || ecef_vel_std > GPS_VEL_STD_THRESHOLD) {
this->determine_gps_mode(current_time);
return;
}
// prevent jumping gnss measurements (covered lots, standstill...)
bool orientation_reset = ecef_vel_std < GPS_VEL_STD_RESET_THRESHOLD;
orientation_reset &= orientation_error.norm() > GPS_ORIENTATION_ERROR_RESET_THRESHOLD;
orientation_reset &= !this->standstill;
if (orientation_reset) {
this->orientation_reset_count++;
} else {
this->orientation_reset_count = 0;
}
if ((gps_est_error > GPS_POS_ERROR_RESET_THRESHOLD && ecef_pos_std < GPS_POS_STD_RESET_THRESHOLD) || this->last_gps_msg == 0) {
// always reset on first gps message and if the location is off but the accuracy is high
LOGE("Locationd vs gnssMeasurement position difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
} else if (orientation_reset_count > GPS_ORIENTATION_ERROR_RESET_CNT) {
LOGE("Locationd vs gnssMeasurement orientation difference too large, kalman reset");
this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_ORIENTATION_FROM_GPS, { initial_pose_ecef_quat });
this->orientation_reset_count = 0;
}
this->gps_mode = true;
this->last_gps_msg = sensor_time;
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
}
void Localizer::handle_car_state(double current_time, const cereal::CarState::Reader& log) {
this->car_speed = std::abs(log.getVEgo());
this->standstill = log.getStandstill();
if (this->standstill) {
this->kf->predict_and_observe(current_time, OBSERVATION_NO_ROT, { Vector3d(0.0, 0.0, 0.0) });
this->kf->predict_and_observe(current_time, OBSERVATION_NO_ACCEL, { Vector3d(0.0, 0.0, 0.0) });
}
}
void Localizer::handle_cam_odo(double current_time, const cereal::CameraOdometry::Reader& log) {
VectorXd rot_device = this->device_from_calib * floatlist2vector(log.getRot());
VectorXd trans_device = this->device_from_calib * floatlist2vector(log.getTrans());
if (!this->is_timestamp_valid(current_time)) {
this->observation_timings_invalid = true;
return;
}
if ((rot_device.norm() > ROTATION_SANITY_CHECK) || (trans_device.norm() > TRANS_SANITY_CHECK)) {
this->observation_values_invalid["cameraOdometry"] += 1.0;
return;
}
VectorXd rot_calib_std = floatlist2vector(log.getRotStd());
VectorXd trans_calib_std = floatlist2vector(log.getTransStd());
if ((rot_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK) || (trans_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK)) {
this->observation_values_invalid["cameraOdometry"] += 1.0;
return;
}
if ((rot_calib_std.norm() > 10 * ROTATION_SANITY_CHECK) || (trans_calib_std.norm() > 10 * TRANS_SANITY_CHECK)) {
this->observation_values_invalid["cameraOdometry"] += 1.0;
return;
}
this->posenet_stds.pop_front();
this->posenet_stds.push_back(trans_calib_std[0]);
// Multiply by 10 to avoid to high certainty in kalman filter because of temporally correlated noise
trans_calib_std *= 10.0;
rot_calib_std *= 10.0;
MatrixXdr rot_device_cov = rotate_std(this->device_from_calib, rot_calib_std).array().square().matrix().asDiagonal();
MatrixXdr trans_device_cov = rotate_std(this->device_from_calib, trans_calib_std).array().square().matrix().asDiagonal();
this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_ROTATION,
{ rot_device }, { rot_device_cov });
this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_TRANSLATION,
{ trans_device }, { trans_device_cov });
this->observation_values_invalid["cameraOdometry"] *= DECAY;
this->camodo_yawrate_distribution = Vector2d(rot_device[2], rotate_std(this->device_from_calib, rot_calib_std)[2]);
}
void Localizer::handle_live_calib(double current_time, const cereal::LiveCalibrationData::Reader& log) {
if (!this->is_timestamp_valid(current_time)) {
this->observation_timings_invalid = true;
return;
}
if (log.getRpyCalib().size() > 0) {
auto live_calib = floatlist2vector(log.getRpyCalib());
if ((live_calib.minCoeff() < -CALIB_RPY_SANITY_CHECK) || (live_calib.maxCoeff() > CALIB_RPY_SANITY_CHECK)) {
this->observation_values_invalid["liveCalibration"] += 1.0;
return;
}
this->calib = live_calib;
this->device_from_calib = euler2rot(this->calib);
this->calib_from_device = this->device_from_calib.transpose();
this->calibrated = log.getCalStatus() == cereal::LiveCalibrationData::Status::CALIBRATED;
this->observation_values_invalid["liveCalibration"] *= DECAY;
}
}
void Localizer::reset_kalman(double current_time) {
const VectorXd &init_x = this->kf->get_initial_x();
const MatrixXdr &init_P = this->kf->get_initial_P();
this->reset_kalman(current_time, init_x, init_P);
}
void Localizer::finite_check(double current_time) {
bool all_finite = this->kf->get_x().array().isFinite().all() or this->kf->get_P().array().isFinite().all();
if (!all_finite) {
LOGE("Non-finite values detected, kalman reset");
this->reset_kalman(current_time);
}
}
void Localizer::time_check(double current_time) {
if (std::isnan(this->last_reset_time)) {
this->last_reset_time = current_time;
}
if (std::isnan(this->first_valid_log_time)) {
this->first_valid_log_time = current_time;
}
double filter_time = this->kf->get_filter_time();
bool big_time_gap = !std::isnan(filter_time) && (current_time - filter_time > 10);
if (big_time_gap) {
LOGE("Time gap of over 10s detected, kalman reset");
this->reset_kalman(current_time);
}
}
void Localizer::update_reset_tracker() {
// reset tracker is tuned to trigger when over 1reset/10s over 2min period
if (this->is_gps_ok()) {
this->reset_tracker *= RESET_TRACKER_DECAY;
} else {
this->reset_tracker = 0.0;
}
}
void Localizer::reset_kalman(double current_time, const VectorXd &init_orient, const VectorXd &init_pos, const VectorXd &init_vel, const MatrixXdr &init_pos_R, const MatrixXdr &init_vel_R) {
// too nonlinear to init on completely wrong
VectorXd current_x = this->kf->get_x();
MatrixXdr current_P = this->kf->get_P();
MatrixXdr init_P = this->kf->get_initial_P();
const MatrixXdr &reset_orientation_P = this->kf->get_reset_orientation_P();
int non_ecef_state_err_len = init_P.rows() - (STATE_ECEF_POS_ERR_LEN + STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN);
current_x.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START) = init_orient;
current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START) = init_vel;
current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) = init_pos;
init_P.block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal() = init_pos_R.diagonal();
init_P.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START).diagonal() = reset_orientation_P.diagonal();
init_P.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START).diagonal() = init_vel_R.diagonal();
init_P.block(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal() = current_P.block(STATE_ANGULAR_VELOCITY_ERR_START,
STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal();
this->reset_kalman(current_time, current_x, init_P);
}
void Localizer::reset_kalman(double current_time, const VectorXd &init_x, const MatrixXdr &init_P) {
this->kf->init_state(init_x, init_P, current_time);
this->last_reset_time = current_time;
this->reset_tracker += 1.0;
}
void Localizer::handle_msg_bytes(const char *data, const size_t size) {
AlignedBuffer aligned_buf;
capnp::FlatArrayMessageReader cmsg(aligned_buf.align(data, size));
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
this->handle_msg(event);
}
void Localizer::handle_msg(const cereal::Event::Reader& log) {
double t = log.getLogMonoTime() * 1e-9;
this->time_check(t);
if (log.isAccelerometer()) {
this->handle_sensor(t, log.getAccelerometer());
} else if (log.isGyroscope()) {
this->handle_sensor(t, log.getGyroscope());
} else if (log.isGpsLocation()) {
this->handle_gps(t, log.getGpsLocation(), GPS_QUECTEL_SENSOR_TIME_OFFSET);
} else if (log.isGpsLocationExternal()) {
this->handle_gps(t, log.getGpsLocationExternal(), GPS_UBLOX_SENSOR_TIME_OFFSET);
//} else if (log.isGnssMeasurements()) {
// this->handle_gnss(t, log.getGnssMeasurements());
} else if (log.isCarState()) {
this->handle_car_state(t, log.getCarState());
} else if (log.isCameraOdometry()) {
this->handle_cam_odo(t, log.getCameraOdometry());
} else if (log.isLiveCalibration()) {
this->handle_live_calib(t, log.getLiveCalibration());
}
this->finite_check();
this->update_reset_tracker();
}
kj::ArrayPtr<capnp::byte> Localizer::get_message_bytes(MessageBuilder& msg_builder, bool inputsOK,
bool sensorsOK, bool gpsOK, bool msgValid) {
cereal::Event::Builder evt = msg_builder.initEvent();
evt.setValid(msgValid);
cereal::LiveLocationKalman::Builder liveLoc = evt.initLiveLocationKalman();
this->build_live_location(liveLoc);
liveLoc.setSensorsOK(sensorsOK);
liveLoc.setGpsOK(gpsOK);
liveLoc.setInputsOK(inputsOK);
return msg_builder.toBytes();
}
bool Localizer::is_gps_ok() {
return (this->kf->get_filter_time() - this->last_gps_msg) < 2.0;
}
bool Localizer::critical_services_valid(const std::map<std::string, double> &critical_services) {
for (auto &kv : critical_services){
if (kv.second >= INPUT_INVALID_THRESHOLD){
return false;
}
}
return true;
}
bool Localizer::is_timestamp_valid(double current_time) {
double filter_time = this->kf->get_filter_time();
if (!std::isnan(filter_time) && ((filter_time - current_time) > MAX_FILTER_REWIND_TIME)) {
LOGE("Observation timestamp is older than the max rewind threshold of the filter");
return false;
}
return true;
}
void Localizer::determine_gps_mode(double current_time) {
// 1. If the pos_std is greater than what's not acceptable and localizer is in gps-mode, reset to no-gps-mode
// 2. If the pos_std is greater than what's not acceptable and localizer is in no-gps-mode, fake obs
// 3. If the pos_std is smaller than what's not acceptable, let gps-mode be whatever it is
VectorXd current_pos_std = this->kf->get_P().block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal().array().sqrt();
if (current_pos_std.norm() > SANE_GPS_UNCERTAINTY){
if (this->gps_mode){
this->gps_mode = false;
this->reset_kalman(current_time);
} else {
this->input_fake_gps_observations(current_time);
}
}
}
void Localizer::configure_gnss_source(const LocalizerGnssSource &source) {
this->gnss_source = source;
if (source == LocalizerGnssSource::UBLOX) {
this->gps_std_factor = 10.0;
this->gps_variance_factor = 1.0;
this->gps_vertical_variance_factor = 1.0;
this->gps_time_offset = GPS_UBLOX_SENSOR_TIME_OFFSET;
} else {
this->gps_std_factor = 2.0;
this->gps_variance_factor = 0.0;
this->gps_vertical_variance_factor = 3.0;
this->gps_time_offset = GPS_QUECTEL_SENSOR_TIME_OFFSET;
}
}
int Localizer::locationd_thread() {
Params params;
LocalizerGnssSource source;
const char* gps_location_socket;
if (params.getBool("UbloxAvailable")) {
source = LocalizerGnssSource::UBLOX;
gps_location_socket = "gpsLocationExternal";
} else {
source = LocalizerGnssSource::QCOM;
gps_location_socket = "gpsLocation";
}
this->configure_gnss_source(source);
const std::initializer_list<const char *> service_list = {gps_location_socket, "cameraOdometry", "liveCalibration",
"carState", "accelerometer", "gyroscope"};
SubMaster sm(service_list, {}, nullptr, {gps_location_socket});
PubMaster pm({"liveLocationKalman"});
uint64_t cnt = 0;
bool filterInitialized = false;
const std::vector<std::string> critical_input_services = {"cameraOdometry", "liveCalibration", "accelerometer", "gyroscope"};
for (std::string service : critical_input_services) {
this->observation_values_invalid.insert({service, 0.0});
}
while (!do_exit) {
sm.update();
if (filterInitialized){
this->observation_timings_invalid_reset();
for (const char* service : service_list) {
if (sm.updated(service) && sm.valid(service)){
const cereal::Event::Reader log = sm[service];
this->handle_msg(log);
}
}
} else {
filterInitialized = sm.allAliveAndValid();
}
const char* trigger_msg = "cameraOdometry";
if (sm.updated(trigger_msg)) {
bool inputsOK = sm.allValid() && this->are_inputs_ok();
bool gpsOK = this->is_gps_ok();
bool sensorsOK = sm.allAliveAndValid({"accelerometer", "gyroscope"});
// Log time to first fix
if (gpsOK && std::isnan(this->ttff) && !std::isnan(this->first_valid_log_time)) {
this->ttff = std::max(1e-3, (sm[trigger_msg].getLogMonoTime() * 1e-9) - this->first_valid_log_time);
}
MessageBuilder msg_builder;
kj::ArrayPtr<capnp::byte> bytes = this->get_message_bytes(msg_builder, inputsOK, sensorsOK, gpsOK, filterInitialized);
pm.send("liveLocationKalman", bytes.begin(), bytes.size());
if (cnt % 1200 == 0 && gpsOK) { // once a minute
VectorXd posGeo = this->get_position_geodetic();
std::string lastGPSPosJSON = util::string_format(
"{\"latitude\": %.15f, \"longitude\": %.15f, \"altitude\": %.15f}", posGeo(0), posGeo(1), posGeo(2));
params.putNonBlocking("LastGPSPosition", lastGPSPosJSON);
}
cnt++;
}
}
return 0;
}
int main() {
util::set_realtime_priority(5);
Localizer localizer;
return localizer.locationd_thread();
}