openpilot1/selfdrive/car/interfaces.py

740 lines
28 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import os
import numpy as np
import tomllib
from abc import abstractmethod, ABC
from difflib import SequenceMatcher
from enum import StrEnum
from typing import Any, NamedTuple
from collections.abc import Callable
from functools import cache
from cereal import car, custom
from openpilot.common.basedir import BASEDIR
from openpilot.common.conversions import Conversions as CV
from openpilot.common.simple_kalman import KF1D, get_kalman_gain
from openpilot.common.numpy_fast import clip
from openpilot.common.params import Params
from openpilot.common.realtime import DT_CTRL
from openpilot.selfdrive.car import apply_hysteresis, gen_empty_fingerprint, scale_rot_inertia, scale_tire_stiffness, STD_CARGO_KG
from openpilot.selfdrive.car.values import PLATFORMS
from openpilot.selfdrive.controls.lib.drive_helpers import CRUISE_LONG_PRESS, V_CRUISE_MAX, get_friction
from openpilot.selfdrive.controls.lib.events import Events
from openpilot.selfdrive.controls.lib.vehicle_model import VehicleModel
ButtonType = car.CarState.ButtonEvent.Type
FrogPilotButtonType = custom.FrogPilotCarState.ButtonEvent.Type
GearShifter = car.CarState.GearShifter
EventName = car.CarEvent.EventName
MAX_CTRL_SPEED = (V_CRUISE_MAX + 4) * CV.KPH_TO_MS
ACCEL_MAX = 2.0
ACCEL_MAX_PLUS = 4.0
ACCEL_MIN = -3.5
FRICTION_THRESHOLD = 0.3
NEURAL_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/neural_ff_weights.json')
TORQUE_NN_MODEL_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/lat_models')
TORQUE_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/params.toml')
TORQUE_OVERRIDE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/override.toml')
TORQUE_SUBSTITUTE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/substitute.toml')
# dict used to rename activation functions whose names aren't valid python identifiers
ACTIVATION_FUNCTION_NAMES = {'σ': 'sigmoid'}
GEAR_SHIFTER_MAP: dict[str, car.CarState.GearShifter] = {
'P': GearShifter.park, 'PARK': GearShifter.park,
'R': GearShifter.reverse, 'REVERSE': GearShifter.reverse,
'N': GearShifter.neutral, 'NEUTRAL': GearShifter.neutral,
'E': GearShifter.eco, 'ECO': GearShifter.eco,
'T': GearShifter.manumatic, 'MANUAL': GearShifter.manumatic,
'D': GearShifter.drive, 'DRIVE': GearShifter.drive,
'S': GearShifter.sport, 'SPORT': GearShifter.sport,
'L': GearShifter.low, 'LOW': GearShifter.low,
'B': GearShifter.brake, 'BRAKE': GearShifter.brake,
}
def similarity(s1: str, s2: str) -> float:
return SequenceMatcher(None, s1, s2).ratio()
class LatControlInputs(NamedTuple):
lateral_acceleration: float
roll_compensation: float
vego: float
aego: float
TorqueFromLateralAccelCallbackType = Callable[[LatControlInputs, car.CarParams.LateralTorqueTuning, float, float, bool, bool], float]
@cache
def get_torque_params():
with open(TORQUE_SUBSTITUTE_PATH, 'rb') as f:
sub = tomllib.load(f)
with open(TORQUE_PARAMS_PATH, 'rb') as f:
params = tomllib.load(f)
with open(TORQUE_OVERRIDE_PATH, 'rb') as f:
override = tomllib.load(f)
torque_params = {}
for candidate in (sub.keys() | params.keys() | override.keys()) - {'legend'}:
if sum([candidate in x for x in [sub, params, override]]) > 1:
raise RuntimeError(f'{candidate} is defined twice in torque config')
sub_candidate = sub.get(candidate, candidate)
if sub_candidate in override:
out = override[sub_candidate]
elif sub_candidate in params:
out = params[sub_candidate]
else:
raise NotImplementedError(f"Did not find torque params for {sub_candidate}")
torque_params[sub_candidate] = {key: out[i] for i, key in enumerate(params['legend'])}
if candidate in sub:
torque_params[candidate] = torque_params[sub_candidate]
return torque_params
# Twilsonco's Lateral Neural Network Feedforward
class FluxModel:
def __init__(self, params_file, zero_bias=False):
with open(params_file, "r") as f:
params = json.load(f)
self.input_size = params["input_size"]
self.output_size = params["output_size"]
self.input_mean = np.array(params["input_mean"], dtype=np.float32).T
self.input_std = np.array(params["input_std"], dtype=np.float32).T
self.layers = []
self.friction_override = False
for layer_params in params["layers"]:
W = np.array(layer_params[next(key for key in layer_params.keys() if key.endswith('_W'))], dtype=np.float32).T
b = np.array(layer_params[next(key for key in layer_params.keys() if key.endswith('_b'))], dtype=np.float32).T
if zero_bias:
b = np.zeros_like(b)
activation = layer_params["activation"]
for k, v in ACTIVATION_FUNCTION_NAMES.items():
activation = activation.replace(k, v)
self.layers.append((W, b, activation))
self.validate_layers()
self.check_for_friction_override()
# Begin activation functions.
# These are called by name using the keys in the model json file
@staticmethod
def sigmoid(x):
return 1 / (1 + np.exp(-x))
@staticmethod
def identity(x):
return x
# End activation functions
def forward(self, x):
for W, b, activation in self.layers:
x = getattr(self, activation)(x.dot(W) + b)
return x
def evaluate(self, input_array):
in_len = len(input_array)
if in_len != self.input_size:
# If the input is length 2-4, then it's a simplified evaluation.
# In that case, need to add on zeros to fill out the input array to match the correct length.
if 2 <= in_len:
input_array = input_array + [0] * (self.input_size - in_len)
else:
raise ValueError(f"Input array length {len(input_array)} must be length 2 or greater")
input_array = np.array(input_array, dtype=np.float32)
# Rescale the input array using the input_mean and input_std
input_array = (input_array - self.input_mean) / self.input_std
output_array = self.forward(input_array)
return float(output_array[0, 0])
def validate_layers(self):
for W, b, activation in self.layers:
if not hasattr(self, activation):
raise ValueError(f"Unknown activation: {activation}")
def check_for_friction_override(self):
y = self.evaluate([10.0, 0.0, 0.2])
self.friction_override = (y < 0.1)
def get_nn_model_path(car, eps_firmware) -> tuple[str | None, float]:
def check_nn_path(check_model):
model_path = None
max_similarity = -1.0
for f in os.listdir(TORQUE_NN_MODEL_PATH):
if f.endswith(".json"):
model = f.replace(".json", "").replace(f"{TORQUE_NN_MODEL_PATH}/", "")
similarity_score = similarity(model, check_model)
if similarity_score > max_similarity:
max_similarity = similarity_score
model_path = os.path.join(TORQUE_NN_MODEL_PATH, f)
return model_path, max_similarity
if len(eps_firmware) > 3:
eps_firmware = eps_firmware.replace("\\", "")
check_model = f"{car} {eps_firmware}"
else:
check_model = car
model_path, max_similarity = check_nn_path(check_model)
if car not in model_path or 0.0 <= max_similarity < 0.9:
check_model = car
model_path, max_similarity = check_nn_path(check_model)
if car not in model_path or 0.0 <= max_similarity < 0.9:
model_path = None
return model_path
def get_nn_model(car, eps_firmware) -> tuple[FluxModel | None, float]:
model = get_nn_model_path(car, eps_firmware)
if model is not None:
model = FluxModel(model)
return model
# generic car and radar interfaces
class CarInterfaceBase(ABC):
def __init__(self, CP, CarController, CarState):
self.CP = CP
self.VM = VehicleModel(CP)
self.frame = 0
self.steering_unpressed = 0
self.low_speed_alert = False
self.no_steer_warning = False
self.silent_steer_warning = True
self.v_ego_cluster_seen = False
self.CS = CarState(CP)
self.cp = self.CS.get_can_parser(CP)
self.cp_cam = self.CS.get_cam_can_parser(CP)
self.cp_adas = self.CS.get_adas_can_parser(CP)
self.cp_body = self.CS.get_body_can_parser(CP)
self.cp_loopback = self.CS.get_loopback_can_parser(CP)
self.can_parsers = [self.cp, self.cp_cam, self.cp_adas, self.cp_body, self.cp_loopback]
dbc_name = "" if self.cp is None else self.cp.dbc_name
self.CC: CarControllerBase = CarController(dbc_name, CP, self.VM)
# FrogPilot variables
self.params = Params()
self.params_memory = Params("/dev/shm/params")
eps_firmware = str(next((fw.fwVersion for fw in CP.carFw if fw.ecu == "eps"), ""))
comma_nnff_supported = self.check_comma_nn_ff_support(CP.carFingerprint)
nnff_supported = self.initialize_lat_torque_nn(CP.carFingerprint, eps_firmware)
lateral_tune = self.params.get_bool("LateralTune")
self.use_nnff = not comma_nnff_supported and nnff_supported and lateral_tune and self.params.get_bool("NNFF")
self.use_nnff_lite = not self.use_nnff and lateral_tune and self.params.get_bool("NNFFLite")
self.always_on_lateral_disabled = False
self.belowSteerSpeed_shown = False
self.disable_belowSteerSpeed = False
self.disable_resumeRequired = False
self.is_gm = self.CP.carName == "gm"
self.prev_distance_button = False
self.resumeRequired_shown = False
self.traffic_mode_active = False
self.traffic_mode_changed = False
self.gap_counter = 0
def get_ff_nn(self, x):
return self.lat_torque_nn_model.evaluate(x)
def check_comma_nn_ff_support(self, car):
with open(NEURAL_PARAMS_PATH, 'r') as file:
data = json.load(file)
return car in data
def initialize_lat_torque_nn(self, car, eps_firmware) -> bool:
self.lat_torque_nn_model = get_nn_model(car, eps_firmware)
return self.lat_torque_nn_model is not None
def apply(self, c: car.CarControl, now_nanos: int, frogpilot_toggles) -> tuple[car.CarControl.Actuators, list[tuple[int, int, bytes, int]]]:
return self.CC.update(c, self.CS, now_nanos, frogpilot_toggles)
@staticmethod
def get_pid_accel_limits(CP, current_speed, cruise_speed, frogpilot_toggles):
if frogpilot_toggles.sport_plus:
return ACCEL_MIN, ACCEL_MAX_PLUS
else:
return ACCEL_MIN, ACCEL_MAX
@classmethod
def get_non_essential_params(cls, candidate: str):
"""
Parameters essential to controlling the car may be incomplete or wrong without FW versions or fingerprints.
"""
return cls.get_params(candidate, gen_empty_fingerprint(), list(), False, False, False)
@classmethod
def get_params(cls, candidate: str, fingerprint: dict[int, dict[int, int]], car_fw: list[car.CarParams.CarFw], disable_openpilot_long: bool, experimental_long: bool, params: Params, docs: bool):
ret = CarInterfaceBase.get_std_params(candidate)
platform = PLATFORMS[candidate]
ret.mass = platform.config.specs.mass
ret.wheelbase = platform.config.specs.wheelbase
ret.steerRatio = platform.config.specs.steerRatio
ret.centerToFront = ret.wheelbase * platform.config.specs.centerToFrontRatio
ret.minEnableSpeed = platform.config.specs.minEnableSpeed
ret.minSteerSpeed = platform.config.specs.minSteerSpeed
ret.tireStiffnessFactor = platform.config.specs.tireStiffnessFactor
ret.flags |= int(platform.config.flags)
ret = cls._get_params(ret, candidate, fingerprint, car_fw, disable_openpilot_long, experimental_long, docs, params)
# Enable torque controller for all cars that do not use angle based steering
if ret.steerControlType != car.CarParams.SteerControlType.angle and params.get_bool("LateralTune") and params.get_bool("NNFF"):
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
eps_firmware = str(next((fw.fwVersion for fw in car_fw if fw.ecu == "eps"), ""))
model = get_nn_model_path(candidate, eps_firmware)
if model is not None:
params.put_nonblocking("NNFFModelName", candidate.replace("_", " "))
# Vehicle mass is published curb weight plus assumed payload such as a human driver; notCars have no assumed payload
if not ret.notCar:
ret.mass = ret.mass + STD_CARGO_KG
# Set params dependent on values set by the car interface
ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase)
ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, ret.tireStiffnessFactor)
return ret
@staticmethod
@abstractmethod
def _get_params(ret: car.CarParams, candidate, fingerprint: dict[int, dict[int, int]],
car_fw: list[car.CarParams.CarFw], experimental_long: bool, docs: bool):
raise NotImplementedError
@staticmethod
def init(CP, logcan, sendcan):
pass
@staticmethod
def get_steer_feedforward_default(desired_angle, v_ego):
# Proportional to realigning tire momentum: lateral acceleration.
return desired_angle * (v_ego**2)
def get_steer_feedforward_function(self):
return self.get_steer_feedforward_default
def torque_from_lateral_accel_linear(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning,
lateral_accel_error: float, lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
# The default is a linear relationship between torque and lateral acceleration (accounting for road roll and steering friction)
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
return (latcontrol_inputs.lateral_acceleration / float(torque_params.latAccelFactor)) + friction
def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType:
return self.torque_from_lateral_accel_linear
# returns a set of default params to avoid repetition in car specific params
@staticmethod
def get_std_params(candidate):
ret = car.CarParams.new_message()
ret.carFingerprint = candidate
# Car docs fields
ret.maxLateralAccel = get_torque_params()[candidate]['MAX_LAT_ACCEL_MEASURED']
ret.autoResumeSng = True # describes whether car can resume from a stop automatically
# standard ALC params
ret.tireStiffnessFactor = 1.0
ret.steerControlType = car.CarParams.SteerControlType.torque
ret.minSteerSpeed = 0.
ret.wheelSpeedFactor = 1.0
ret.pcmCruise = True # openpilot's state is tied to the PCM's cruise state on most cars
ret.minEnableSpeed = -1. # enable is done by stock ACC, so ignore this
ret.steerRatioRear = 0. # no rear steering, at least on the listed cars aboveA
ret.openpilotLongitudinalControl = False
ret.stopAccel = -2.0
ret.stoppingDecelRate = 0.8 # brake_travel/s while trying to stop
ret.vEgoStopping = 0.5
ret.vEgoStarting = 0.5
ret.stoppingControl = True
ret.longitudinalTuning.kf = 1.
ret.longitudinalTuning.kpBP = [0.]
ret.longitudinalTuning.kpV = [0.]
ret.longitudinalTuning.kiBP = [0.]
ret.longitudinalTuning.kiV = [0.]
# TODO estimate car specific lag, use .15s for now
ret.longitudinalActuatorDelay = 0.15
ret.steerLimitTimer = 1.0
return ret
@staticmethod
def configure_torque_tune(candidate, tune, steering_angle_deadzone_deg=0.0, use_steering_angle=True):
params = get_torque_params()[candidate]
tune.init('torque')
tune.torque.useSteeringAngle = use_steering_angle
tune.torque.kp = 1.0
tune.torque.kf = 1.0
tune.torque.ki = 0.1
tune.torque.friction = params['FRICTION']
tune.torque.latAccelFactor = params['LAT_ACCEL_FACTOR']
tune.torque.latAccelOffset = 0.0
tune.torque.steeringAngleDeadzoneDeg = steering_angle_deadzone_deg
@abstractmethod
def _update(self, c: car.CarControl) -> car.CarState:
pass
def update(self, c: car.CarControl, can_strings: list[bytes], frogpilot_toggles) -> car.CarState:
# parse can
for cp in self.can_parsers:
if cp is not None:
cp.update_strings(can_strings)
# get CarState
ret, fp_ret = self._update(c, frogpilot_toggles)
ret.canValid = all(cp.can_valid for cp in self.can_parsers if cp is not None)
ret.canTimeout = any(cp.bus_timeout for cp in self.can_parsers if cp is not None)
if ret.vEgoCluster == 0.0 and not self.v_ego_cluster_seen:
ret.vEgoCluster = ret.vEgo
else:
self.v_ego_cluster_seen = True
# Many cars apply hysteresis to the ego dash speed
if self.CS is not None:
ret.vEgoCluster = apply_hysteresis(ret.vEgoCluster, self.CS.out.vEgoCluster, self.CS.cluster_speed_hyst_gap)
if abs(ret.vEgo) < self.CS.cluster_min_speed:
ret.vEgoCluster = 0.0
if ret.cruiseState.speedCluster == 0:
ret.cruiseState.speedCluster = ret.cruiseState.speed
# Add any additional frogpilotCarStates
fp_ret.alwaysOnLateralDisabled = self.always_on_lateral_disabled
fp_ret.distanceLongPressed = self.frogpilot_distance_functions(frogpilot_toggles)
fp_ret.ecoGear |= ret.gearShifter == GearShifter.eco
fp_ret.sportGear |= ret.gearShifter == GearShifter.sport
fp_ret.trafficModeActive = frogpilot_toggles.traffic_mode and self.traffic_mode_active
# copy back for next iteration
if self.CS is not None:
self.CS.out = ret.as_reader()
return ret, fp_ret
def create_common_events(self, cs_out, extra_gears=None, pcm_enable=True, allow_enable=True,
enable_buttons=(ButtonType.accelCruise, ButtonType.decelCruise)):
events = Events()
if cs_out.doorOpen:
events.add(EventName.doorOpen)
if cs_out.seatbeltUnlatched:
events.add(EventName.seatbeltNotLatched)
if cs_out.gearShifter != GearShifter.drive and (extra_gears is None or
cs_out.gearShifter not in extra_gears):
events.add(EventName.wrongGear)
if cs_out.gearShifter == GearShifter.reverse:
events.add(EventName.reverseGear)
if not cs_out.cruiseState.available:
events.add(EventName.wrongCarMode)
if cs_out.espDisabled:
events.add(EventName.espDisabled)
if cs_out.stockFcw:
events.add(EventName.stockFcw)
if cs_out.stockAeb:
events.add(EventName.stockAeb)
if cs_out.vEgo > MAX_CTRL_SPEED:
events.add(EventName.speedTooHigh)
if cs_out.cruiseState.nonAdaptive:
events.add(EventName.wrongCruiseMode)
if cs_out.brakeHoldActive and self.CP.openpilotLongitudinalControl:
events.add(EventName.brakeHold)
if cs_out.parkingBrake:
events.add(EventName.parkBrake)
if cs_out.accFaulted:
events.add(EventName.accFaulted)
if cs_out.steeringPressed:
events.add(EventName.steerOverride)
if cs_out.brakePressed and cs_out.standstill:
events.add(EventName.preEnableStandstill)
if cs_out.gasPressed:
events.add(EventName.gasPressedOverride)
# Handle button presses
for b in cs_out.buttonEvents:
# Enable OP long on falling edge of enable buttons (defaults to accelCruise and decelCruise, overridable per-port)
if not self.CP.pcmCruise and (b.type in enable_buttons and not b.pressed):
events.add(EventName.buttonEnable)
# Disable on rising and falling edge of cancel for both stock and OP long
if b.type == ButtonType.cancel:
events.add(EventName.buttonCancel)
# FrogPilot button presses
if b.type == FrogPilotButtonType.lkas and b.pressed:
self.always_on_lateral_disabled = not self.always_on_lateral_disabled
# Handle permanent and temporary steering faults
self.steering_unpressed = 0 if cs_out.steeringPressed else self.steering_unpressed + 1
if cs_out.steerFaultTemporary:
if cs_out.steeringPressed and (not self.CS.out.steerFaultTemporary or self.no_steer_warning):
self.no_steer_warning = True
else:
self.no_steer_warning = False
# if the user overrode recently, show a less harsh alert
if self.silent_steer_warning or cs_out.standstill or self.steering_unpressed < int(1.5 / DT_CTRL):
self.silent_steer_warning = True
events.add(EventName.steerTempUnavailableSilent)
else:
events.add(EventName.steerTempUnavailable)
else:
self.no_steer_warning = False
self.silent_steer_warning = False
if cs_out.steerFaultPermanent:
events.add(EventName.steerUnavailable)
# we engage when pcm is active (rising edge)
# enabling can optionally be blocked by the car interface
if pcm_enable:
if cs_out.cruiseState.enabled and not self.CS.out.cruiseState.enabled and allow_enable:
events.add(EventName.pcmEnable)
elif not cs_out.cruiseState.enabled:
events.add(EventName.pcmDisable)
return events
def frogpilot_distance_functions(self, frogpilot_toggles):
distance_button = self.CS.distance_button or self.params_memory.get_bool("OnroadDistanceButtonPressed")
if distance_button:
self.gap_counter += 1
elif not self.prev_distance_button:
self.gap_counter = 0
if self.gap_counter == CRUISE_LONG_PRESS * (1.5 if self.is_gm else 1) and frogpilot_toggles.experimental_mode_via_distance or self.traffic_mode_changed:
if frogpilot_toggles.conditional_experimental_mode:
conditional_status = self.params_memory.get_int("CEStatus")
override_value = 0 if conditional_status in {1, 2, 3, 4, 5, 6} else 1 if conditional_status >= 7 else 2
self.params_memory.put_int("CEStatus", override_value)
else:
experimental_mode = self.params.get_bool("ExperimentalMode")
self.params.put_bool("ExperimentalMode", not experimental_mode)
self.traffic_mode_changed = False
if self.gap_counter == CRUISE_LONG_PRESS * 5 and frogpilot_toggles.traffic_mode:
self.traffic_mode_active = not self.traffic_mode_active
self.traffic_mode_changed = frogpilot_toggles.experimental_mode_via_distance
self.prev_distance_button = distance_button
return self.gap_counter >= CRUISE_LONG_PRESS
class RadarInterfaceBase(ABC):
def __init__(self, CP):
self.rcp = None
self.pts = {}
self.delay = 0
self.radar_ts = CP.radarTimeStep
self.frame = 0
def update(self, can_strings):
self.frame += 1
if (self.frame % int(100 * self.radar_ts)) == 0:
return car.RadarData.new_message()
return None
class CarStateBase(ABC):
def __init__(self, CP):
self.CP = CP
self.car_fingerprint = CP.carFingerprint
self.out = car.CarState.new_message()
self.cruise_buttons = 0
self.left_blinker_cnt = 0
self.right_blinker_cnt = 0
self.steering_pressed_cnt = 0
self.left_blinker_prev = False
self.right_blinker_prev = False
self.cluster_speed_hyst_gap = 0.0
self.cluster_min_speed = 0.0 # min speed before dropping to 0
Q = [[0.0, 0.0], [0.0, 100.0]]
R = 0.3
A = [[1.0, DT_CTRL], [0.0, 1.0]]
C = [[1.0, 0.0]]
x0=[[0.0], [0.0]]
K = get_kalman_gain(DT_CTRL, np.array(A), np.array(C), np.array(Q), R)
self.v_ego_kf = KF1D(x0=x0, A=A, C=C[0], K=K)
# FrogPilot variables
self.cruise_decreased = False
self.cruise_increased = False
self.distance_button = False
self.lkas_enabled = False
def update_speed_kf(self, v_ego_raw):
if abs(v_ego_raw - self.v_ego_kf.x[0][0]) > 2.0: # Prevent large accelerations when car starts at non zero speed
self.v_ego_kf.set_x([[v_ego_raw], [0.0]])
v_ego_x = self.v_ego_kf.update(v_ego_raw)
return float(v_ego_x[0]), float(v_ego_x[1])
def get_wheel_speeds(self, fl, fr, rl, rr, unit=CV.KPH_TO_MS):
factor = unit * self.CP.wheelSpeedFactor
wheelSpeeds = car.CarState.WheelSpeeds.new_message()
wheelSpeeds.fl = fl * factor
wheelSpeeds.fr = fr * factor
wheelSpeeds.rl = rl * factor
wheelSpeeds.rr = rr * factor
return wheelSpeeds
def update_blinker_from_lamp(self, blinker_time: int, left_blinker_lamp: bool, right_blinker_lamp: bool):
"""Update blinkers from lights. Enable output when light was seen within the last `blinker_time`
iterations"""
# TODO: Handle case when switching direction. Now both blinkers can be on at the same time
self.left_blinker_cnt = blinker_time if left_blinker_lamp else max(self.left_blinker_cnt - 1, 0)
self.right_blinker_cnt = blinker_time if right_blinker_lamp else max(self.right_blinker_cnt - 1, 0)
return self.left_blinker_cnt > 0, self.right_blinker_cnt > 0
def update_steering_pressed(self, steering_pressed, steering_pressed_min_count):
"""Applies filtering on steering pressed for noisy driver torque signals."""
self.steering_pressed_cnt += 1 if steering_pressed else -1
self.steering_pressed_cnt = clip(self.steering_pressed_cnt, 0, steering_pressed_min_count * 2)
return self.steering_pressed_cnt > steering_pressed_min_count
def update_blinker_from_stalk(self, blinker_time: int, left_blinker_stalk: bool, right_blinker_stalk: bool):
"""Update blinkers from stalk position. When stalk is seen the blinker will be on for at least blinker_time,
or until the stalk is turned off, whichever is longer. If the opposite stalk direction is seen the blinker
is forced to the other side. On a rising edge of the stalk the timeout is reset."""
if left_blinker_stalk:
self.right_blinker_cnt = 0
if not self.left_blinker_prev:
self.left_blinker_cnt = blinker_time
if right_blinker_stalk:
self.left_blinker_cnt = 0
if not self.right_blinker_prev:
self.right_blinker_cnt = blinker_time
self.left_blinker_cnt = max(self.left_blinker_cnt - 1, 0)
self.right_blinker_cnt = max(self.right_blinker_cnt - 1, 0)
self.left_blinker_prev = left_blinker_stalk
self.right_blinker_prev = right_blinker_stalk
return bool(left_blinker_stalk or self.left_blinker_cnt > 0), bool(right_blinker_stalk or self.right_blinker_cnt > 0)
@staticmethod
def parse_gear_shifter(gear: str | None) -> car.CarState.GearShifter:
if gear is None:
return GearShifter.unknown
return GEAR_SHIFTER_MAP.get(gear.upper(), GearShifter.unknown)
@staticmethod
def get_can_parser(CP):
return None
@staticmethod
def get_cam_can_parser(CP):
return None
@staticmethod
def get_adas_can_parser(CP):
return None
@staticmethod
def get_body_can_parser(CP):
return None
@staticmethod
def get_loopback_can_parser(CP):
return None
SendCan = tuple[int, int, bytes, int]
class CarControllerBase(ABC):
def __init__(self, dbc_name: str, CP, VM):
pass
@abstractmethod
def update(self, CC: car.CarControl.Actuators, CS: car.CarState, now_nanos: int) -> tuple[car.CarControl.Actuators, list[SendCan]]:
pass
INTERFACE_ATTR_FILE = {
"FINGERPRINTS": "fingerprints",
"FW_VERSIONS": "fingerprints",
}
# interface-specific helpers
def get_interface_attr(attr: str, combine_brands: bool = False, ignore_none: bool = False) -> dict[str | StrEnum, Any]:
# read all the folders in selfdrive/car and return a dict where:
# - keys are all the car models or brand names
# - values are attr values from all car folders
result = {}
for car_folder in sorted([x[0] for x in os.walk(BASEDIR + '/selfdrive/car')]):
try:
brand_name = car_folder.split('/')[-1]
brand_values = __import__(f'openpilot.selfdrive.car.{brand_name}.{INTERFACE_ATTR_FILE.get(attr, "values")}', fromlist=[attr])
if hasattr(brand_values, attr) or not ignore_none:
attr_data = getattr(brand_values, attr, None)
else:
continue
if combine_brands:
if isinstance(attr_data, dict):
for f, v in attr_data.items():
result[f] = v
else:
result[brand_name] = attr_data
except (ImportError, OSError):
pass
return result
class NanoFFModel:
def __init__(self, weights_loc: str, platform: str):
self.weights_loc = weights_loc
self.platform = platform
self.load_weights(platform)
def load_weights(self, platform: str):
with open(self.weights_loc) as fob:
self.weights = {k: np.array(v) for k, v in json.load(fob)[platform].items()}
def relu(self, x: np.ndarray):
return np.maximum(0.0, x)
def forward(self, x: np.ndarray):
assert x.ndim == 1
x = (x - self.weights['input_norm_mat'][:, 0]) / (self.weights['input_norm_mat'][:, 1] - self.weights['input_norm_mat'][:, 0])
x = self.relu(np.dot(x, self.weights['w_1']) + self.weights['b_1'])
x = self.relu(np.dot(x, self.weights['w_2']) + self.weights['b_2'])
x = self.relu(np.dot(x, self.weights['w_3']) + self.weights['b_3'])
x = np.dot(x, self.weights['w_4']) + self.weights['b_4']
return x
def predict(self, x: list[float], do_sample: bool = False):
x = self.forward(np.array(x))
if do_sample:
pred = np.random.laplace(x[0], np.exp(x[1]) / self.weights['temperature'])
else:
pred = x[0]
pred = pred * (self.weights['output_norm_mat'][1] - self.weights['output_norm_mat'][0]) + self.weights['output_norm_mat'][0]
return pred