openpilot1/selfdrive/navd/helpers.py

190 lines
5.5 KiB
Python

from __future__ import annotations
import json
import math
from typing import Any, cast
from openpilot.common.conversions import Conversions
from openpilot.common.numpy_fast import clip
from openpilot.common.params import Params
DIRECTIONS = ('left', 'right', 'straight')
MODIFIABLE_DIRECTIONS = ('left', 'right')
EARTH_MEAN_RADIUS = 6371007.2
SPEED_CONVERSIONS = {
'km/h': Conversions.KPH_TO_MS,
'mph': Conversions.MPH_TO_MS,
}
class Coordinate:
def __init__(self, latitude: float, longitude: float) -> None:
self.latitude = latitude
self.longitude = longitude
self.annotations: dict[str, float] = {}
@classmethod
def from_mapbox_tuple(cls, t: tuple[float, float]) -> Coordinate:
return cls(t[1], t[0])
def as_dict(self) -> dict[str, float]:
return {'latitude': self.latitude, 'longitude': self.longitude}
def __str__(self) -> str:
return f'Coordinate({self.latitude}, {self.longitude})'
def __repr__(self) -> str:
return self.__str__()
def __eq__(self, other) -> bool:
if not isinstance(other, Coordinate):
return False
return (self.latitude == other.latitude) and (self.longitude == other.longitude)
def __sub__(self, other: Coordinate) -> Coordinate:
return Coordinate(self.latitude - other.latitude, self.longitude - other.longitude)
def __add__(self, other: Coordinate) -> Coordinate:
return Coordinate(self.latitude + other.latitude, self.longitude + other.longitude)
def __mul__(self, c: float) -> Coordinate:
return Coordinate(self.latitude * c, self.longitude * c)
def dot(self, other: Coordinate) -> float:
return self.latitude * other.latitude + self.longitude * other.longitude
def distance_to(self, other: Coordinate) -> float:
# Haversine formula
dlat = math.radians(other.latitude - self.latitude)
dlon = math.radians(other.longitude - self.longitude)
haversine_dlat = math.sin(dlat / 2.0)
haversine_dlat *= haversine_dlat
haversine_dlon = math.sin(dlon / 2.0)
haversine_dlon *= haversine_dlon
y = haversine_dlat \
+ math.cos(math.radians(self.latitude)) \
* math.cos(math.radians(other.latitude)) \
* haversine_dlon
x = 2 * math.asin(math.sqrt(y))
return x * EARTH_MEAN_RADIUS
def minimum_distance(a: Coordinate, b: Coordinate, p: Coordinate):
if a.distance_to(b) < 0.01:
return a.distance_to(p)
ap = p - a
ab = b - a
t = clip(ap.dot(ab) / ab.dot(ab), 0.0, 1.0)
projection = a + ab * t
return projection.distance_to(p)
def distance_along_geometry(geometry: list[Coordinate], pos: Coordinate) -> float:
if len(geometry) <= 2:
return geometry[0].distance_to(pos)
# 1. Find segment that is closest to current position
# 2. Total distance is sum of distance to start of closest segment
# + all previous segments
total_distance = 0.0
total_distance_closest = 0.0
closest_distance = 1e9
for i in range(len(geometry) - 1):
d = minimum_distance(geometry[i], geometry[i + 1], pos)
if d < closest_distance:
closest_distance = d
total_distance_closest = total_distance + geometry[i].distance_to(pos)
total_distance += geometry[i].distance_to(geometry[i + 1])
return total_distance_closest
def coordinate_from_param(param: str, params: Params = None) -> Coordinate | None:
if params is None:
params = Params()
json_str = params.get(param)
if json_str is None:
return None
pos = json.loads(json_str)
if 'latitude' not in pos or 'longitude' not in pos:
return None
return Coordinate(pos['latitude'], pos['longitude'])
def string_to_direction(direction: str) -> str:
for d in DIRECTIONS:
if d in direction:
if 'slight' in direction and d in MODIFIABLE_DIRECTIONS:
return 'slight' + d.capitalize()
return d
return 'none'
def maxspeed_to_ms(maxspeed: dict[str, str | float]) -> float:
unit = cast(str, maxspeed['unit'])
speed = cast(float, maxspeed['speed'])
return SPEED_CONVERSIONS[unit] * speed
def field_valid(dat: dict, field: str) -> bool:
return field in dat and dat[field] is not None
def parse_banner_instructions(banners: Any, distance_to_maneuver: float = 0.0) -> dict[str, Any] | None:
if not len(banners):
return None
instruction = {}
# A segment can contain multiple banners, find one that we need to show now
current_banner = banners[0]
for banner in banners:
if distance_to_maneuver < banner['distanceAlongGeometry']:
current_banner = banner
# Only show banner when close enough to maneuver
instruction['showFull'] = distance_to_maneuver < current_banner['distanceAlongGeometry']
# Primary
p = current_banner['primary']
if field_valid(p, 'text'):
instruction['maneuverPrimaryText'] = p['text']
if field_valid(p, 'type'):
instruction['maneuverType'] = p['type']
if field_valid(p, 'modifier'):
instruction['maneuverModifier'] = p['modifier']
# Secondary
if field_valid(current_banner, 'secondary'):
instruction['maneuverSecondaryText'] = current_banner['secondary']['text']
# Lane lines
if field_valid(current_banner, 'sub'):
lanes = []
for component in current_banner['sub']['components']:
if component['type'] != 'lane':
continue
lane = {
'active': component['active'],
'directions': [string_to_direction(d) for d in component['directions']],
}
if field_valid(component, 'active_direction'):
lane['activeDirection'] = string_to_direction(component['active_direction'])
lanes.append(lane)
instruction['lanes'] = lanes
return instruction