openpilot1/tinygrad_repo/examples/index.html

124 lines
4.0 KiB
HTML

<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
#result { font-size: 48px; }
#time { font-size: 16px; color: grey; }
#mybox { padding: 20px; }
#resultbox { padding: 50px; }
.bigggg { font-size: 18px; margin-top: 10px; }
.bigg { font-size: 18px; }
#url { font-size: 18px; width: 70%; }
a { text-decoration: none; }
h1 { padding: 50px; padding-bottom: 0px; font-size: 36px; font-weight: normal; }
#imagebox { height:224px; width:224px; border: 1px dotted black; }
#video { height:0px; width:0px; border: 1px dotted black; object-fit: cover;}
canvas { display: none; }
* { text-align: center; font-family: monospace; }
</style>
<title>tinygrad has WebGPU</title>
<script src="./net.js"></script>
<link rel="icon" type="image/x-icon" href="https://raw.githubusercontent.com/tinygrad/tinygrad/master/docs/logo.png">
</head>
<body>
<h1>WebGPU <a href="https://github.com/geohot/tinygrad">tinygrad</a> EfficientNet!</h1>
<div id="mybox">
<input type="text" id="url" placeholder="put url here" value="https://upload.wikimedia.org/wikipedia/commons/d/da/Norwegian_hen.jpg">
<input class="bigg" type="button" onclick="runNetWResource(document.getElementById('url').value)" value="Use URL">
</div>
<br/>
<img id="imagebox"></img>
<canvas id="canvas" width="200" height="200"> </canvas>
<div id="resultbox">
<div id="result">result will go here</div>
<div id="time"></div>
</div>
<script>
const ctx = document.getElementById("canvas").getContext("2d", { willReadFrequently: true });
const resultText = document.getElementById('result');
let labels, net;
const error = (err) => {
resultText.innerHTML = `Error: ${err}`;
throw new Error(err);
}
const getDevice = async () => {
if (!navigator.gpu) error("WebGPU not supported.");
const adapter = await navigator.gpu.requestAdapter();
return await adapter.requestDevice();
};
const timer = async (func, label = "") => {
document.getElementById('time').innerHTML = "";
const start = performance.now();
const out = await func();
const delta = (performance.now() - start).toFixed(1)
console.log(`${delta} ms ${label}`);
document.getElementById('time').innerHTML = `${delta} ms ${label}`;
return out;
}
const getLabels = async () => (await fetch("https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json")).json();
const getSavetensorBuffer = async () => new Uint8Array(await (await fetch("./net.safetensors")).arrayBuffer());
const reorderChannelsAndRemoveAlpha = (data) => {
const out = [];
let i = 0;
for (let c = 0; c < 3; c++) {
for (let x = 0; x < 224 * 224; x++) {
out[i] = data[x * 4 + c];
i++;
}
}
return out;
};
const runNetWResource = async (resource) => {
resultText.innerHTML = "pending..."
if (resource == "") error("sir. please type in a URL");
const response = await fetch(resource)
if (!response.ok) error("sir. that is not a good URL. try a new one");
document.getElementById("imagebox").src = resource
const img = new Image();
img.crossOrigin = "Anonymous";
img.onload = () => {
URL.revokeObjectURL(img.src);
ctx.drawImage(img, 0, 0, 224, 224);
const data = ctx.getImageData(0, 0, 224, 224).data;
runNet(data)
};
img.src = resource;
}
const loadLet = async () => {
try {
resultText.innerHTML = "loading..."
labels = await getLabels();
const safetensor = await getSavetensorBuffer();
const device = await getDevice();
net = await timer(() => setupNet(device, safetensor), "(compilation)");
resultText.innerHTML = "ready"
} catch (e) {
error(e)
}
}
const runNet = async (data) => {
if (!net) error("Net not loaded yet.");
const input = reorderChannelsAndRemoveAlpha(Array.from(data).map((pix) => (pix / 255.0) * 0.45 - 0.225));
const out = await timer(() => net(new Float32Array(input)));
const arr = Array.from(new Float32Array(out[0]));
const index = arr.indexOf(Math.max(...arr));
resultText.textContent = labels[index];
};
loadLet();
</script>
</body>
</html>