openpilot1/third_party/kaitai/kaitaistream.cpp

690 lines
19 KiB
C++

#include <kaitai/kaitaistream.h>
#if defined(__APPLE__)
#include <machine/endian.h>
#include <libkern/OSByteOrder.h>
#define bswap_16(x) OSSwapInt16(x)
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)
#define __BYTE_ORDER BYTE_ORDER
#define __BIG_ENDIAN BIG_ENDIAN
#define __LITTLE_ENDIAN LITTLE_ENDIAN
#elif defined(_MSC_VER) // !__APPLE__
#include <stdlib.h>
#define __LITTLE_ENDIAN 1234
#define __BIG_ENDIAN 4321
#define __BYTE_ORDER __LITTLE_ENDIAN
#define bswap_16(x) _byteswap_ushort(x)
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)
#else // !__APPLE__ or !_MSC_VER
#include <endian.h>
#include <byteswap.h>
#endif
#include <iostream>
#include <vector>
#include <stdexcept>
kaitai::kstream::kstream(std::istream* io) {
m_io = io;
init();
}
kaitai::kstream::kstream(std::string& data): m_io_str(data) {
m_io = &m_io_str;
init();
}
void kaitai::kstream::init() {
exceptions_enable();
align_to_byte();
}
void kaitai::kstream::close() {
// m_io->close();
}
void kaitai::kstream::exceptions_enable() const {
m_io->exceptions(
std::istream::eofbit |
std::istream::failbit |
std::istream::badbit
);
}
// ========================================================================
// Stream positioning
// ========================================================================
bool kaitai::kstream::is_eof() const {
if (m_bits_left > 0) {
return false;
}
char t;
m_io->exceptions(
std::istream::badbit
);
m_io->get(t);
if (m_io->eof()) {
m_io->clear();
exceptions_enable();
return true;
} else {
m_io->unget();
exceptions_enable();
return false;
}
}
void kaitai::kstream::seek(uint64_t pos) {
m_io->seekg(pos);
}
uint64_t kaitai::kstream::pos() {
return m_io->tellg();
}
uint64_t kaitai::kstream::size() {
std::iostream::pos_type cur_pos = m_io->tellg();
m_io->seekg(0, std::ios::end);
std::iostream::pos_type len = m_io->tellg();
m_io->seekg(cur_pos);
return len;
}
// ========================================================================
// Integer numbers
// ========================================================================
// ------------------------------------------------------------------------
// Signed
// ------------------------------------------------------------------------
int8_t kaitai::kstream::read_s1() {
char t;
m_io->get(t);
return t;
}
// ........................................................................
// Big-endian
// ........................................................................
int16_t kaitai::kstream::read_s2be() {
int16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_16(t);
#endif
return t;
}
int32_t kaitai::kstream::read_s4be() {
int32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return t;
}
int64_t kaitai::kstream::read_s8be() {
int64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ........................................................................
// Little-endian
// ........................................................................
int16_t kaitai::kstream::read_s2le() {
int16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_16(t);
#endif
return t;
}
int32_t kaitai::kstream::read_s4le() {
int32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return t;
}
int64_t kaitai::kstream::read_s8le() {
int64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ------------------------------------------------------------------------
// Unsigned
// ------------------------------------------------------------------------
uint8_t kaitai::kstream::read_u1() {
char t;
m_io->get(t);
return t;
}
// ........................................................................
// Big-endian
// ........................................................................
uint16_t kaitai::kstream::read_u2be() {
uint16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_16(t);
#endif
return t;
}
uint32_t kaitai::kstream::read_u4be() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return t;
}
uint64_t kaitai::kstream::read_u8be() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ........................................................................
// Little-endian
// ........................................................................
uint16_t kaitai::kstream::read_u2le() {
uint16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_16(t);
#endif
return t;
}
uint32_t kaitai::kstream::read_u4le() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return t;
}
uint64_t kaitai::kstream::read_u8le() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ========================================================================
// Floating point numbers
// ========================================================================
// ........................................................................
// Big-endian
// ........................................................................
float kaitai::kstream::read_f4be() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return reinterpret_cast<float&>(t);
}
double kaitai::kstream::read_f8be() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return reinterpret_cast<double&>(t);
}
// ........................................................................
// Little-endian
// ........................................................................
float kaitai::kstream::read_f4le() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return reinterpret_cast<float&>(t);
}
double kaitai::kstream::read_f8le() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return reinterpret_cast<double&>(t);
}
// ========================================================================
// Unaligned bit values
// ========================================================================
void kaitai::kstream::align_to_byte() {
m_bits_left = 0;
m_bits = 0;
}
uint64_t kaitai::kstream::read_bits_int_be(int n) {
int bits_needed = n - m_bits_left;
if (bits_needed > 0) {
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytes_needed = ((bits_needed - 1) / 8) + 1;
if (bytes_needed > 8)
throw std::runtime_error("read_bits_int: more than 8 bytes requested");
char buf[8];
m_io->read(buf, bytes_needed);
for (int i = 0; i < bytes_needed; i++) {
uint8_t b = buf[i];
m_bits <<= 8;
m_bits |= b;
m_bits_left += 8;
}
}
// raw mask with required number of 1s, starting from lowest bit
uint64_t mask = get_mask_ones(n);
// shift mask to align with highest bits available in @bits
int shift_bits = m_bits_left - n;
mask <<= shift_bits;
// derive reading result
uint64_t res = (m_bits & mask) >> shift_bits;
// clear top bits that we've just read => AND with 1s
m_bits_left -= n;
mask = get_mask_ones(m_bits_left);
m_bits &= mask;
return res;
}
// Deprecated, use read_bits_int_be() instead.
uint64_t kaitai::kstream::read_bits_int(int n) {
return read_bits_int_be(n);
}
uint64_t kaitai::kstream::read_bits_int_le(int n) {
int bits_needed = n - m_bits_left;
if (bits_needed > 0) {
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytes_needed = ((bits_needed - 1) / 8) + 1;
if (bytes_needed > 8)
throw std::runtime_error("read_bits_int_le: more than 8 bytes requested");
char buf[8];
m_io->read(buf, bytes_needed);
for (int i = 0; i < bytes_needed; i++) {
uint8_t b = buf[i];
m_bits |= (static_cast<uint64_t>(b) << m_bits_left);
m_bits_left += 8;
}
}
// raw mask with required number of 1s, starting from lowest bit
uint64_t mask = get_mask_ones(n);
// derive reading result
uint64_t res = m_bits & mask;
// remove bottom bits that we've just read by shifting
m_bits >>= n;
m_bits_left -= n;
return res;
}
uint64_t kaitai::kstream::get_mask_ones(int n) {
if (n == 64) {
return 0xFFFFFFFFFFFFFFFF;
} else {
return ((uint64_t) 1 << n) - 1;
}
}
// ========================================================================
// Byte arrays
// ========================================================================
std::string kaitai::kstream::read_bytes(std::streamsize len) {
std::vector<char> result(len);
// NOTE: streamsize type is signed, negative values are only *supposed* to not be used.
// http://en.cppreference.com/w/cpp/io/streamsize
if (len < 0) {
throw std::runtime_error("read_bytes: requested a negative amount");
}
if (len > 0) {
m_io->read(&result[0], len);
}
return std::string(result.begin(), result.end());
}
std::string kaitai::kstream::read_bytes_full() {
std::iostream::pos_type p1 = m_io->tellg();
m_io->seekg(0, std::ios::end);
std::iostream::pos_type p2 = m_io->tellg();
size_t len = p2 - p1;
// Note: this requires a std::string to be backed with a
// contiguous buffer. Officially, it's a only requirement since
// C++11 (C++98 and C++03 didn't have this requirement), but all
// major implementations had contiguous buffers anyway.
std::string result(len, ' ');
m_io->seekg(p1);
m_io->read(&result[0], len);
return result;
}
std::string kaitai::kstream::read_bytes_term(char term, bool include, bool consume, bool eos_error) {
std::string result;
std::getline(*m_io, result, term);
if (m_io->eof()) {
// encountered EOF
if (eos_error) {
throw std::runtime_error("read_bytes_term: encountered EOF");
}
} else {
// encountered terminator
if (include)
result.push_back(term);
if (!consume)
m_io->unget();
}
return result;
}
std::string kaitai::kstream::ensure_fixed_contents(std::string expected) {
std::string actual = read_bytes(expected.length());
if (actual != expected) {
// NOTE: I think printing it outright is not best idea, it could contain non-ascii charactes like backspace and beeps and whatnot. It would be better to print hexlified version, and also to redirect it to stderr.
throw std::runtime_error("ensure_fixed_contents: actual data does not match expected data");
}
return actual;
}
std::string kaitai::kstream::bytes_strip_right(std::string src, char pad_byte) {
std::size_t new_len = src.length();
while (new_len > 0 && src[new_len - 1] == pad_byte)
new_len--;
return src.substr(0, new_len);
}
std::string kaitai::kstream::bytes_terminate(std::string src, char term, bool include) {
std::size_t new_len = 0;
std::size_t max_len = src.length();
while (new_len < max_len && src[new_len] != term)
new_len++;
if (include && new_len < max_len)
new_len++;
return src.substr(0, new_len);
}
// ========================================================================
// Byte array processing
// ========================================================================
std::string kaitai::kstream::process_xor_one(std::string data, uint8_t key) {
size_t len = data.length();
std::string result(len, ' ');
for (size_t i = 0; i < len; i++)
result[i] = data[i] ^ key;
return result;
}
std::string kaitai::kstream::process_xor_many(std::string data, std::string key) {
size_t len = data.length();
size_t kl = key.length();
std::string result(len, ' ');
size_t ki = 0;
for (size_t i = 0; i < len; i++) {
result[i] = data[i] ^ key[ki];
ki++;
if (ki >= kl)
ki = 0;
}
return result;
}
std::string kaitai::kstream::process_rotate_left(std::string data, int amount) {
size_t len = data.length();
std::string result(len, ' ');
for (size_t i = 0; i < len; i++) {
uint8_t bits = data[i];
result[i] = (bits << amount) | (bits >> (8 - amount));
}
return result;
}
#ifdef KS_ZLIB
#include <zlib.h>
std::string kaitai::kstream::process_zlib(std::string data) {
int ret;
unsigned char *src_ptr = reinterpret_cast<unsigned char*>(&data[0]);
std::stringstream dst_strm;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = inflateInit(&strm);
if (ret != Z_OK)
throw std::runtime_error("process_zlib: inflateInit error");
strm.next_in = src_ptr;
strm.avail_in = data.length();
unsigned char outbuffer[ZLIB_BUF_SIZE];
std::string outstring;
// get the decompressed bytes blockwise using repeated calls to inflate
do {
strm.next_out = reinterpret_cast<Bytef*>(outbuffer);
strm.avail_out = sizeof(outbuffer);
ret = inflate(&strm, 0);
if (outstring.size() < strm.total_out)
outstring.append(reinterpret_cast<char*>(outbuffer), strm.total_out - outstring.size());
} while (ret == Z_OK);
if (ret != Z_STREAM_END) { // an error occurred that was not EOF
std::ostringstream exc_msg;
exc_msg << "process_zlib: error #" << ret << "): " << strm.msg;
throw std::runtime_error(exc_msg.str());
}
if (inflateEnd(&strm) != Z_OK)
throw std::runtime_error("process_zlib: inflateEnd error");
return outstring;
}
#endif
// ========================================================================
// Misc utility methods
// ========================================================================
int kaitai::kstream::mod(int a, int b) {
if (b <= 0)
throw std::invalid_argument("mod: divisor b <= 0");
int r = a % b;
if (r < 0)
r += b;
return r;
}
#include <stdio.h>
std::string kaitai::kstream::to_string(int val) {
// if int is 32 bits, "-2147483648" is the longest string representation
// => 11 chars + zero => 12 chars
// if int is 64 bits, "-9223372036854775808" is the longest
// => 20 chars + zero => 21 chars
char buf[25];
int got_len = snprintf(buf, sizeof(buf), "%d", val);
// should never happen, but check nonetheless
if (got_len > sizeof(buf))
throw std::invalid_argument("to_string: integer is longer than string buffer");
return std::string(buf);
}
#include <algorithm>
std::string kaitai::kstream::reverse(std::string val) {
std::reverse(val.begin(), val.end());
return val;
}
uint8_t kaitai::kstream::byte_array_min(const std::string val) {
uint8_t min = 0xff; // UINT8_MAX
std::string::const_iterator end = val.end();
for (std::string::const_iterator it = val.begin(); it != end; ++it) {
uint8_t cur = static_cast<uint8_t>(*it);
if (cur < min) {
min = cur;
}
}
return min;
}
uint8_t kaitai::kstream::byte_array_max(const std::string val) {
uint8_t max = 0; // UINT8_MIN
std::string::const_iterator end = val.end();
for (std::string::const_iterator it = val.begin(); it != end; ++it) {
uint8_t cur = static_cast<uint8_t>(*it);
if (cur > max) {
max = cur;
}
}
return max;
}
// ========================================================================
// Other internal methods
// ========================================================================
#ifndef KS_STR_DEFAULT_ENCODING
#define KS_STR_DEFAULT_ENCODING "UTF-8"
#endif
#ifdef KS_STR_ENCODING_ICONV
#include <iconv.h>
#include <cerrno>
#include <stdexcept>
std::string kaitai::kstream::bytes_to_str(std::string src, std::string src_enc) {
iconv_t cd = iconv_open(KS_STR_DEFAULT_ENCODING, src_enc.c_str());
if (cd == (iconv_t) -1) {
if (errno == EINVAL) {
throw std::runtime_error("bytes_to_str: invalid encoding pair conversion requested");
} else {
throw std::runtime_error("bytes_to_str: error opening iconv");
}
}
size_t src_len = src.length();
size_t src_left = src_len;
// Start with a buffer length of double the source length.
size_t dst_len = src_len * 2;
std::string dst(dst_len, ' ');
size_t dst_left = dst_len;
char *src_ptr = &src[0];
char *dst_ptr = &dst[0];
while (true) {
size_t res = iconv(cd, &src_ptr, &src_left, &dst_ptr, &dst_left);
if (res == (size_t) -1) {
if (errno == E2BIG) {
// dst buffer is not enough to accomodate whole string
// enlarge the buffer and try again
size_t dst_used = dst_len - dst_left;
dst_left += dst_len;
dst_len += dst_len;
dst.resize(dst_len);
// dst.resize might have allocated destination buffer in another area
// of memory, thus our previous pointer "dst" will be invalid; re-point
// it using "dst_used".
dst_ptr = &dst[dst_used];
} else {
throw std::runtime_error("bytes_to_str: iconv error");
}
} else {
// conversion successful
dst.resize(dst_len - dst_left);
break;
}
}
if (iconv_close(cd) != 0) {
throw std::runtime_error("bytes_to_str: iconv close error");
}
return dst;
}
#elif defined(KS_STR_ENCODING_NONE)
std::string kaitai::kstream::bytes_to_str(std::string src, std::string src_enc) {
return src;
}
#else
#error Need to decide how to handle strings: please define one of: KS_STR_ENCODING_ICONV, KS_STR_ENCODING_NONE
#endif