271 lines
11 KiB
Python
Executable File
271 lines
11 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import os
|
|
import math
|
|
import json
|
|
import numpy as np
|
|
|
|
import cereal.messaging as messaging
|
|
from cereal import car
|
|
from cereal import log
|
|
from openpilot.common.params import Params
|
|
from openpilot.common.realtime import config_realtime_process, DT_MDL
|
|
from openpilot.common.numpy_fast import clip
|
|
from openpilot.selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
|
|
from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR
|
|
from openpilot.common.swaglog import cloudlog
|
|
|
|
|
|
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
|
|
ROLL_MAX_DELTA = math.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
|
|
ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10)
|
|
ROLL_LOWERED_MAX = math.radians(8)
|
|
ROLL_STD_MAX = math.radians(1.5)
|
|
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
|
|
OFFSET_MAX = 10.0
|
|
OFFSET_LOWERED_MAX = 8.0
|
|
MIN_ACTIVE_SPEED = 1.0
|
|
LOW_ACTIVE_SPEED = 10.0
|
|
|
|
|
|
class ParamsLearner:
|
|
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None):
|
|
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial)
|
|
|
|
self.kf.filter.set_global("mass", CP.mass)
|
|
self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
|
|
self.kf.filter.set_global("center_to_front", CP.centerToFront)
|
|
self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront)
|
|
self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront)
|
|
self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear)
|
|
|
|
self.active = False
|
|
|
|
self.speed = 0.0
|
|
self.yaw_rate = 0.0
|
|
self.yaw_rate_std = 0.0
|
|
self.roll = 0.0
|
|
self.steering_angle = 0.0
|
|
self.roll_valid = False
|
|
|
|
def handle_log(self, t, which, msg):
|
|
if which == 'liveLocationKalman':
|
|
self.yaw_rate = msg.angularVelocityCalibrated.value[2]
|
|
self.yaw_rate_std = msg.angularVelocityCalibrated.std[2]
|
|
|
|
localizer_roll = msg.orientationNED.value[0]
|
|
localizer_roll_std = np.radians(1) if np.isnan(msg.orientationNED.std[0]) else msg.orientationNED.std[0]
|
|
self.roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK
|
|
if self.roll_valid:
|
|
roll = localizer_roll
|
|
# Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
|
|
roll_std = 2 * localizer_roll_std
|
|
else:
|
|
# This is done to bound the road roll estimate when localizer values are invalid
|
|
roll = 0.0
|
|
roll_std = np.radians(10.0)
|
|
self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
|
|
|
|
yaw_rate_valid = msg.angularVelocityCalibrated.valid
|
|
yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10 # rad/s
|
|
yaw_rate_valid = yaw_rate_valid and abs(self.yaw_rate) < 1 # rad/s
|
|
|
|
if self.active:
|
|
if msg.posenetOK:
|
|
|
|
if yaw_rate_valid:
|
|
self.kf.predict_and_observe(t,
|
|
ObservationKind.ROAD_FRAME_YAW_RATE,
|
|
np.array([[-self.yaw_rate]]),
|
|
np.array([np.atleast_2d(self.yaw_rate_std**2)]))
|
|
|
|
self.kf.predict_and_observe(t,
|
|
ObservationKind.ROAD_ROLL,
|
|
np.array([[self.roll]]),
|
|
np.array([np.atleast_2d(roll_std**2)]))
|
|
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
|
|
|
|
# We observe the current stiffness and steer ratio (with a high observation noise) to bound
|
|
# the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
|
|
# states in longer routes (especially straight stretches).
|
|
stiffness = float(self.kf.x[States.STIFFNESS].item())
|
|
steer_ratio = float(self.kf.x[States.STEER_RATIO].item())
|
|
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
|
|
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
|
|
|
|
elif which == 'carState':
|
|
self.steering_angle = msg.steeringAngleDeg
|
|
self.speed = msg.vEgo
|
|
|
|
complex_dynamics = abs(msg.aEgo) > 1.0 or abs(msg.steeringRateDeg) > 20
|
|
in_linear_region = abs(self.steering_angle) < 45
|
|
self.active = self.speed > MIN_ACTIVE_SPEED and in_linear_region and not complex_dynamics
|
|
|
|
if self.active:
|
|
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]]))
|
|
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]]))
|
|
|
|
if not self.active:
|
|
# Reset time when stopped so uncertainty doesn't grow
|
|
self.kf.filter.set_filter_time(t)
|
|
self.kf.filter.reset_rewind()
|
|
|
|
|
|
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
|
|
if current_valid:
|
|
current_valid = abs(val) < threshold
|
|
else:
|
|
current_valid = abs(val) < lowered_threshold
|
|
return current_valid
|
|
|
|
|
|
def main():
|
|
config_realtime_process([0, 1, 2, 3], 5)
|
|
|
|
DEBUG = bool(int(os.getenv("DEBUG", "0")))
|
|
REPLAY = bool(int(os.getenv("REPLAY", "0")))
|
|
|
|
pm = messaging.PubMaster(['liveParameters'])
|
|
sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll='liveLocationKalman')
|
|
|
|
params_reader = Params()
|
|
params_memory = Params("/dev/shm/params")
|
|
# wait for stats about the car to come in from controls
|
|
cloudlog.info("paramsd is waiting for CarParams")
|
|
with car.CarParams.from_bytes(params_reader.get("CarParams", block=True)) as msg:
|
|
CP = msg
|
|
cloudlog.info("paramsd got CarParams")
|
|
|
|
min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
|
|
|
|
params = params_reader.get("LiveParameters")
|
|
|
|
# Check if car model matches
|
|
if params is not None:
|
|
params = json.loads(params)
|
|
if params.get('carFingerprint', None) != CP.carFingerprint:
|
|
cloudlog.info("Parameter learner found parameters for wrong car.")
|
|
params = None
|
|
|
|
# Check if starting values are sane
|
|
if params is not None:
|
|
try:
|
|
steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
|
|
if not steer_ratio_sane:
|
|
cloudlog.info(f"Invalid starting values found {params}")
|
|
params = None
|
|
except Exception as e:
|
|
cloudlog.info(f"Error reading params {params}: {str(e)}")
|
|
params = None
|
|
|
|
# TODO: cache the params with the capnp struct
|
|
if params is None:
|
|
params = {
|
|
'carFingerprint': CP.carFingerprint,
|
|
'steerRatio': CP.steerRatio,
|
|
'stiffnessFactor': 1.0,
|
|
'angleOffsetAverageDeg': 0.0,
|
|
}
|
|
cloudlog.info("Parameter learner resetting to default values")
|
|
|
|
if not REPLAY:
|
|
# When driving in wet conditions the stiffness can go down, and then be too low on the next drive
|
|
# Without a way to detect this we have to reset the stiffness every drive
|
|
params['stiffnessFactor'] = 1.0
|
|
|
|
pInitial = None
|
|
if DEBUG:
|
|
pInitial = np.array(params['filterState']['std']) if 'filterState' in params else None
|
|
|
|
learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']), pInitial)
|
|
angle_offset_average = params['angleOffsetAverageDeg']
|
|
angle_offset = angle_offset_average
|
|
roll = 0.0
|
|
avg_offset_valid = True
|
|
total_offset_valid = True
|
|
roll_valid = True
|
|
|
|
while True:
|
|
sm.update()
|
|
if sm.all_checks():
|
|
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
|
|
if sm.updated[which]:
|
|
t = sm.logMonoTime[which] * 1e-9
|
|
learner.handle_log(t, which, sm[which])
|
|
|
|
if sm.updated['liveLocationKalman']:
|
|
location = sm['liveLocationKalman']
|
|
if (location.status == log.LiveLocationKalman.Status.valid) and location.positionGeodetic.valid and location.gpsOK:
|
|
bearing = math.degrees(location.calibratedOrientationNED.value[2])
|
|
lat = location.positionGeodetic.value[0]
|
|
lon = location.positionGeodetic.value[1]
|
|
params_memory.put("LastGPSPosition", json.dumps({"latitude": lat, "longitude": lon, "bearing": bearing}))
|
|
x = learner.kf.x
|
|
P = np.sqrt(learner.kf.P.diagonal())
|
|
if not all(map(math.isfinite, x)):
|
|
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
|
|
learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
|
|
x = learner.kf.x
|
|
|
|
angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET].item()),
|
|
angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
|
|
angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
|
|
angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
|
|
roll = clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
|
|
roll_std = float(P[States.ROAD_ROLL].item())
|
|
if learner.active and learner.speed > LOW_ACTIVE_SPEED:
|
|
# Account for the opposite signs of the yaw rates
|
|
# At low speeds, bumping into a curb can cause the yaw rate to be very high
|
|
sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE].item() + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
|
|
else:
|
|
sensors_valid = True
|
|
avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX)
|
|
total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
|
|
roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX)
|
|
|
|
msg = messaging.new_message('liveParameters')
|
|
|
|
liveParameters = msg.liveParameters
|
|
liveParameters.posenetValid = True
|
|
liveParameters.sensorValid = sensors_valid
|
|
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
|
|
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
|
|
liveParameters.roll = roll
|
|
liveParameters.angleOffsetAverageDeg = angle_offset_average
|
|
liveParameters.angleOffsetDeg = angle_offset
|
|
liveParameters.valid = all((
|
|
avg_offset_valid,
|
|
total_offset_valid,
|
|
roll_valid,
|
|
roll_std < ROLL_STD_MAX,
|
|
0.2 <= liveParameters.stiffnessFactor <= 5.0,
|
|
min_sr <= liveParameters.steerRatio <= max_sr,
|
|
))
|
|
if CP.carFingerprint == "RAM_HD" or CP.carName == "subaru" and CP.lateralTuning.which() == "torque":
|
|
liveParameters.valid = True
|
|
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
|
|
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
|
|
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
|
|
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
|
|
if DEBUG:
|
|
liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message()
|
|
liveParameters.filterState.value = x.tolist()
|
|
liveParameters.filterState.std = P.tolist()
|
|
liveParameters.filterState.valid = True
|
|
|
|
msg.valid = sm.all_checks()
|
|
|
|
if sm.frame % 1200 == 0: # once a minute
|
|
params = {
|
|
'carFingerprint': CP.carFingerprint,
|
|
'steerRatio': liveParameters.steerRatio,
|
|
'stiffnessFactor': liveParameters.stiffnessFactor,
|
|
'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg,
|
|
}
|
|
params_reader.put_nonblocking("LiveParameters", json.dumps(params))
|
|
|
|
pm.send('liveParameters', msg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|