#!/usr/bin/env python3 # type: ignore ''' System tools like top/htop can only show current cpu usage values, so I write this script to do statistics jobs. Features: Use psutil library to sample cpu usage(avergage for all cores) of openpilot processes, at a rate of 5 samples/sec. Do cpu usage statistics periodically, 5 seconds as a cycle. Calculate the average cpu usage within this cycle. Calculate minumium/maximum/accumulated_average cpu usage as long term inspections. Monitor multiple processes simuteneously. Sample usage: root@localhost:/data/openpilot$ python selfdrive/debug/cpu_usage_stat.py pandad,ubloxd ('Add monitored proc:', './pandad') ('Add monitored proc:', 'python locationd/ubloxd.py') pandad: 1.96%, min: 1.96%, max: 1.96%, acc: 1.96% ubloxd.py: 0.39%, min: 0.39%, max: 0.39%, acc: 0.39% ''' import psutil import time import os import sys import numpy as np import argparse import re from collections import defaultdict from openpilot.system.manager.process_config import managed_processes # Do statistics every 5 seconds PRINT_INTERVAL = 5 SLEEP_INTERVAL = 0.2 monitored_proc_names = [ # android procs 'SurfaceFlinger', 'sensors.qcom' ] + list(managed_processes.keys()) cpu_time_names = ['user', 'system', 'children_user', 'children_system'] timer = getattr(time, 'monotonic', time.time) def get_arg_parser(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("proc_names", nargs="?", default='', help="Process names to be monitored, comma separated") parser.add_argument("--list_all", action='store_true', help="Show all running processes' cmdline") parser.add_argument("--detailed_times", action='store_true', help="show cpu time details (split by user, system, child user, child system)") return parser if __name__ == "__main__": args = get_arg_parser().parse_args(sys.argv[1:]) if args.list_all: for p in psutil.process_iter(): print('cmdline', p.cmdline(), 'name', p.name()) sys.exit(0) if len(args.proc_names) > 0: monitored_proc_names = args.proc_names.split(',') monitored_procs = [] stats = {} for p in psutil.process_iter(): if p == psutil.Process(): continue matched = any(l for l in p.cmdline() if any(pn for pn in monitored_proc_names if re.match(fr'.*{pn}.*', l, re.M | re.I))) if matched: k = ' '.join(p.cmdline()) print('Add monitored proc:', k) stats[k] = {'cpu_samples': defaultdict(list), 'min': defaultdict(lambda: None), 'max': defaultdict(lambda: None), 'avg': defaultdict(float), 'last_cpu_times': None, 'last_sys_time': None} stats[k]['last_sys_time'] = timer() stats[k]['last_cpu_times'] = p.cpu_times() monitored_procs.append(p) i = 0 interval_int = int(PRINT_INTERVAL / SLEEP_INTERVAL) while True: for p in monitored_procs: k = ' '.join(p.cmdline()) cur_sys_time = timer() cur_cpu_times = p.cpu_times() cpu_times = np.subtract(cur_cpu_times, stats[k]['last_cpu_times']) / (cur_sys_time - stats[k]['last_sys_time']) stats[k]['last_sys_time'] = cur_sys_time stats[k]['last_cpu_times'] = cur_cpu_times cpu_percent = 0 for num, name in enumerate(cpu_time_names): stats[k]['cpu_samples'][name].append(cpu_times[num]) cpu_percent += cpu_times[num] stats[k]['cpu_samples']['total'].append(cpu_percent) time.sleep(SLEEP_INTERVAL) i += 1 if i % interval_int == 0: l = [] for k, stat in stats.items(): if len(stat['cpu_samples']) <= 0: continue for name, samples in stat['cpu_samples'].items(): samples = np.array(samples) avg = samples.mean() c = samples.size min_cpu = np.amin(samples) max_cpu = np.amax(samples) if stat['min'][name] is None or min_cpu < stat['min'][name]: stat['min'][name] = min_cpu if stat['max'][name] is None or max_cpu > stat['max'][name]: stat['max'][name] = max_cpu stat['avg'][name] = (stat['avg'][name] * (i - c) + avg * c) / (i) stat['cpu_samples'][name] = [] msg = f"avg: {stat['avg']['total']:.2%}, min: {stat['min']['total']:.2%}, max: {stat['max']['total']:.2%} {os.path.basename(k)}" if args.detailed_times: for stat_type in ['avg', 'min', 'max']: msg += f"\n {stat_type}: {[(name + ':' + str(round(stat[stat_type][name] * 100, 2))) for name in cpu_time_names]}" l.append((os.path.basename(k), stat['avg']['total'], msg)) l.sort(key=lambda x: -x[1]) for x in l: print(x[2]) print('avg sum: {:.2%} over {} samples {} seconds\n'.format( sum(stat['avg']['total'] for k, stat in stats.items()), i, i * SLEEP_INTERVAL ))