#!/usr/bin/env python3 import os import time import pickle import numpy as np import cereal.messaging as messaging from cereal import car, log from pathlib import Path from setproctitle import setproctitle from types import SimpleNamespace from cereal.messaging import PubMaster, SubMaster from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf from openpilot.common.swaglog import cloudlog from openpilot.common.params import Params from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.realtime import config_realtime_process from openpilot.common.transformations.camera import DEVICE_CAMERAS from openpilot.common.transformations.model import get_warp_matrix from openpilot.system import sentry from openpilot.selfdrive.car.car_helpers import get_demo_car_params from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper from openpilot.selfdrive.classic_modeld.runners import ModelRunner, Runtime from openpilot.selfdrive.classic_modeld.parse_model_outputs import Parser from openpilot.selfdrive.classic_modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState from openpilot.selfdrive.classic_modeld.constants import ModelConstants from openpilot.selfdrive.classic_modeld.models.commonmodel_pyx import ModelFrame, CLContext from openpilot.selfdrive.frogpilot.assets.model_manager import DEFAULT_MODEL from openpilot.selfdrive.frogpilot.frogpilot_functions import MODELS_PATH from openpilot.selfdrive.frogpilot.frogpilot_variables import get_frogpilot_toggles PROCESS_NAME = "selfdrive.classic_modeld.modeld" SEND_RAW_PRED = os.getenv('SEND_RAW_PRED') MODEL_PATHS = { ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed', ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'} METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl' class FrameMeta: frame_id: int = 0 timestamp_sof: int = 0 timestamp_eof: int = 0 def __init__(self, vipc=None): if vipc is not None: self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof class ModelState: frame: ModelFrame wide_frame: ModelFrame inputs: dict[str, np.ndarray] output: np.ndarray prev_desire: np.ndarray # for tracking the rising edge of the pulse model: ModelRunner def __init__(self, context: CLContext, frogpilot_toggles: SimpleNamespace): # FrogPilot variables self.enable_navigation = not frogpilot_toggles.navigationless_model self.radarless = frogpilot_toggles.radarless_model model_path = Path(__file__).parent / f'{MODELS_PATH}/{frogpilot_toggles.model}.thneed' if frogpilot_toggles.model != DEFAULT_MODEL and model_path.exists(): MODEL_PATHS[ModelRunner.THNEED] = model_path self.frame = ModelFrame(context) self.wide_frame = ModelFrame(context) self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32) self.inputs = { 'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32), 'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32), 'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32), 'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32), **({'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32), 'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)} if self.enable_navigation else {}), 'features_buffer': np.zeros((ModelConstants.HISTORY_BUFFER_LEN) * ModelConstants.FEATURE_LEN, dtype=np.float32), **({'radar_tracks': np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32)} if self.radarless else {}), } with open(METADATA_PATH, 'rb') as f: model_metadata = pickle.load(f) self.output_slices = model_metadata['output_slices'] net_output_size = model_metadata['output_shapes']['outputs'][1] self.output = np.zeros(net_output_size, dtype=np.float32) self.parser = Parser() self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context) self.model.addInput("input_imgs", None) self.model.addInput("big_input_imgs", None) for k,v in self.inputs.items(): self.model.addInput(k, v) def slice_outputs(self, model_outputs: np.ndarray) -> dict[str, np.ndarray]: parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()} if SEND_RAW_PRED: parsed_model_outputs['raw_pred'] = model_outputs.copy() return parsed_model_outputs def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray, inputs: dict[str, np.ndarray], prepare_only: bool) -> dict[str, np.ndarray] | None: # Model decides when action is completed, so desire input is just a pulse triggered on rising edge inputs['desire'][0] = 0 self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:] self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0) self.prev_desire[:] = inputs['desire'] self.inputs['traffic_convention'][:] = inputs['traffic_convention'] self.inputs['lateral_control_params'][:] = inputs['lateral_control_params'] if self.enable_navigation: self.inputs['nav_features'][:] = inputs['nav_features'] self.inputs['nav_instructions'][:] = inputs['nav_instructions'] if self.radarless: self.inputs['radar_tracks'][:] = inputs['radar_tracks'] # if getCLBuffer is not None, frame will be None self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs"))) if wbuf is not None: self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs"))) if prepare_only: return None self.model.execute() outputs = self.parser.parse_outputs(self.slice_outputs(self.output)) self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:] self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :] self.inputs['prev_desired_curv'][:-ModelConstants.PREV_DESIRED_CURV_LEN] = self.inputs['prev_desired_curv'][ModelConstants.PREV_DESIRED_CURV_LEN:] self.inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = outputs['desired_curvature'][0, :] return outputs def main(demo=False): # FrogPilot variables frogpilot_toggles = get_frogpilot_toggles(True) enable_navigation = not frogpilot_toggles.navigationless_model radarless = frogpilot_toggles.radarless_model cloudlog.warning("classic_modeld init") sentry.set_tag("daemon", PROCESS_NAME) cloudlog.bind(daemon=PROCESS_NAME) setproctitle(PROCESS_NAME) config_realtime_process(7, 54) cloudlog.warning("setting up CL context") cl_context = CLContext() cloudlog.warning("CL context ready; loading model") model = ModelState(cl_context, frogpilot_toggles) cloudlog.warning("models loaded, classic_modeld starting") # visionipc clients while True: available_streams = VisionIpcClient.available_streams("camerad", block=False) if available_streams: use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams break time.sleep(.1) vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context) vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context) cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}") while not vipc_client_main.connect(False): time.sleep(0.1) while use_extra_client and not vipc_client_extra.connect(False): time.sleep(0.1) cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})") if use_extra_client: cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})") # messaging pm = PubMaster(["modelV2", "cameraOdometry"]) sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl", "liveTracks", "frogpilotPlan"]) publish_state = PublishState() params = Params() # setup filter to track dropped frames frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ) frame_id = 0 last_vipc_frame_id = 0 run_count = 0 model_transform_main = np.zeros((3, 3), dtype=np.float32) model_transform_extra = np.zeros((3, 3), dtype=np.float32) live_calib_seen = False nav_features = np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32) nav_instructions = np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32) buf_main, buf_extra = None, None meta_main = FrameMeta() meta_extra = FrameMeta() if demo: CP = get_demo_car_params() else: with car.CarParams.from_bytes(params.get("CarParams", block=True)) as msg: CP = msg cloudlog.info("classic_modeld got CarParams: %s", CP.carName) # TODO this needs more thought, use .2s extra for now to estimate other delays steer_delay = CP.steerActuatorDelay + .2 DH = DesireHelper() while True: # Keep receiving frames until we are at least 1 frame ahead of previous extra frame while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: buf_main = vipc_client_main.recv() meta_main = FrameMeta(vipc_client_main) if buf_main is None: break if buf_main is None: cloudlog.debug("vipc_client_main no frame") continue if use_extra_client: # Keep receiving extra frames until frame id matches main camera while True: buf_extra = vipc_client_extra.recv() meta_extra = FrameMeta(vipc_client_extra) if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: break if buf_extra is None: cloudlog.debug("vipc_client_extra no frame") continue if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000: cloudlog.error(f"frames out of sync! main: {meta_main.frame_id} ({meta_main.timestamp_sof / 1e9:.5f}),\ extra: {meta_extra.frame_id} ({meta_extra.timestamp_sof / 1e9:.5f})") else: # Use single camera buf_extra = buf_main meta_extra = meta_main sm.update(0) desire = DH.desire is_rhd = sm["driverMonitoringState"].isRHD frame_id = sm["roadCameraState"].frameId lateral_control_params = np.array([sm["carState"].vEgo, steer_delay], dtype=np.float32) if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']: device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32) dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))] model_transform_main = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics if main_wide_camera else dc.fcam.intrinsics, False).astype(np.float32) model_transform_extra = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics, True).astype(np.float32) live_calib_seen = True traffic_convention = np.zeros(2) traffic_convention[int(is_rhd)] = 1 vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32) if desire >= 0 and desire < ModelConstants.DESIRE_LEN: vec_desire[desire] = 1 # Enable/disable nav features timestamp_llk = sm["navModel"].locationMonoTime nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9) nav_enabled = nav_valid and enable_navigation if not nav_enabled: nav_features[:] = 0 nav_instructions[:] = 0 if nav_enabled and sm.updated["navModel"]: nav_features = np.array(sm["navModel"].features) if nav_enabled and sm.updated["navInstruction"]: nav_instructions[:] = 0 for maneuver in sm["navInstruction"].allManeuvers: distance_idx = 25 + int(maneuver.distance / 20) direction_idx = 0 if maneuver.modifier in ("left", "slight left", "sharp left"): direction_idx = 1 if maneuver.modifier in ("right", "slight right", "sharp right"): direction_idx = 2 if 0 <= distance_idx < 50: nav_instructions[distance_idx*3 + direction_idx] = 1 radar_tracks = np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32) if sm.updated["liveTracks"]: for i, track in enumerate(sm["liveTracks"]): if i >= ModelConstants.RADAR_TRACKS_LEN: break vec_index = i * ModelConstants.RADAR_TRACKS_WIDTH radar_tracks[vec_index:vec_index+ModelConstants.RADAR_TRACKS_WIDTH] = [track.dRel, track.yRel, track.vRel] # tracked dropped frames vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1) frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10)) if run_count < 10: # let frame drops warm up frame_dropped_filter.x = 0. frames_dropped = 0. run_count = run_count + 1 frame_drop_ratio = frames_dropped / (1 + frames_dropped) prepare_only = vipc_dropped_frames > 0 if prepare_only: cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames") inputs:dict[str, np.ndarray] = { 'desire': vec_desire, 'traffic_convention': traffic_convention, 'lateral_control_params': lateral_control_params, **({'nav_features': nav_features, 'nav_instructions': nav_instructions} if enable_navigation else {}), **({'radar_tracks': radar_tracks,} if radarless else {}), } mt1 = time.perf_counter() model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only) mt2 = time.perf_counter() model_execution_time = mt2 - mt1 if model_output is not None: modelv2_send = messaging.new_message('modelV2') posenet_send = messaging.new_message('cameraOdometry') fill_model_msg(modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio, meta_main.timestamp_eof, timestamp_llk, model_execution_time, live_calib_seen, nav_enabled) desire_state = modelv2_send.modelV2.meta.desireState l_lane_change_prob = desire_state[log.Desire.laneChangeLeft] r_lane_change_prob = desire_state[log.Desire.laneChangeRight] lane_change_prob = l_lane_change_prob + r_lane_change_prob DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob, sm['frogpilotPlan'], frogpilot_toggles) modelv2_send.modelV2.meta.laneChangeState = DH.lane_change_state modelv2_send.modelV2.meta.laneChangeDirection = DH.lane_change_direction modelv2_send.modelV2.meta.turnDirection = DH.turn_direction fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen) pm.send('modelV2', modelv2_send) pm.send('cameraOdometry', posenet_send) last_vipc_frame_id = meta_main.frame_id # Update FrogPilot parameters if sm['frogpilotPlan'].togglesUpdated: frogpilot_toggles = get_frogpilot_toggles() if __name__ == "__main__": try: import argparse parser = argparse.ArgumentParser() parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.') args = parser.parse_args() main(demo=args.demo) except KeyboardInterrupt: cloudlog.warning(f"child {PROCESS_NAME} got SIGINT") except Exception: sentry.capture_exception() raise