openpilot1/third_party/acados/acados_template/acados_ocp_solver_pyx.pyx

796 lines
33 KiB
Cython
Raw Normal View History

# -*- coding: future_fstrings -*-
#
# Copyright (c) The acados authors.
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
# cython: language_level=3
# cython: profile=False
# distutils: language=c
cimport cython
from libc cimport string
cimport acados_solver_common
# TODO: make this import more clear? it is not a general solver, but problem specific.
cimport acados_solver
cimport numpy as cnp
import os
from datetime import datetime
import numpy as np
cdef class AcadosOcpSolverCython:
"""
Class to interact with the acados ocp solver C object.
"""
cdef acados_solver.nlp_solver_capsule *capsule
cdef void *nlp_opts
cdef acados_solver_common.ocp_nlp_dims *nlp_dims
cdef acados_solver_common.ocp_nlp_config *nlp_config
cdef acados_solver_common.ocp_nlp_out *nlp_out
cdef acados_solver_common.ocp_nlp_out *sens_out
cdef acados_solver_common.ocp_nlp_in *nlp_in
cdef acados_solver_common.ocp_nlp_solver *nlp_solver
cdef bint solver_created
cdef str model_name
cdef int N
cdef str nlp_solver_type
def __cinit__(self, model_name, nlp_solver_type, N):
self.solver_created = False
self.N = N
self.model_name = model_name
self.nlp_solver_type = nlp_solver_type
# create capsule
self.capsule = acados_solver.acados_create_capsule()
# create solver
assert acados_solver.acados_create(self.capsule) == 0
self.solver_created = True
# get pointers solver
self.__get_pointers_solver()
def __get_pointers_solver(self):
"""
Private function to get the pointers for solver
"""
# get pointers solver
self.nlp_opts = acados_solver.acados_get_nlp_opts(self.capsule)
self.nlp_dims = acados_solver.acados_get_nlp_dims(self.capsule)
self.nlp_config = acados_solver.acados_get_nlp_config(self.capsule)
self.nlp_out = acados_solver.acados_get_nlp_out(self.capsule)
self.sens_out = acados_solver.acados_get_sens_out(self.capsule)
self.nlp_in = acados_solver.acados_get_nlp_in(self.capsule)
self.nlp_solver = acados_solver.acados_get_nlp_solver(self.capsule)
def solve_for_x0(self, x0_bar):
"""
Wrapper around `solve()` which sets initial state constraint, solves the OCP, and returns u0.
"""
self.set(0, "lbx", x0_bar)
self.set(0, "ubx", x0_bar)
status = self.solve()
if status == 2:
print("Warning: acados_ocp_solver reached maximum iterations.")
elif status != 0:
raise Exception(f'acados acados_ocp_solver returned status {status}')
u0 = self.get(0, "u")
return u0
def solve(self):
"""
Solve the ocp with current input.
"""
return acados_solver.acados_solve(self.capsule)
def reset(self, reset_qp_solver_mem=1):
"""
Sets current iterate to all zeros.
"""
return acados_solver.acados_reset(self.capsule, reset_qp_solver_mem)
def custom_update(self, data_):
"""
A custom function that can be implemented by a user to be called between solver calls.
By default this does nothing.
The idea is to have a convenient wrapper to do complex updates of parameters and numerical data efficiently in C,
in a function that is compiled into the solver library and can be conveniently used in the Python environment.
"""
data_len = len(data_)
cdef cnp.ndarray[cnp.float64_t, ndim=1] data = np.ascontiguousarray(data_, dtype=np.float64)
return acados_solver.acados_custom_update(self.capsule, <double *> data.data, data_len)
def set_new_time_steps(self, new_time_steps):
"""
Set new time steps.
Recreates the solver if N changes.
:param new_time_steps: 1 dimensional np array of new time steps for the solver
.. note:: This allows for different use-cases: either set a new size of time-steps or a new distribution of
the shooting nodes without changing the number, e.g., to reach a different final time. Both cases
do not require a new code export and compilation.
"""
raise NotImplementedError("AcadosOcpSolverCython: does not support set_new_time_steps() since it is only a prototyping feature")
# # unlikely but still possible
# if not self.solver_created:
# raise Exception('Solver was not yet created!')
# ## check if time steps really changed in value
# # get time steps
# cdef cnp.ndarray[cnp.float64_t, ndim=1] old_time_steps = np.ascontiguousarray(np.zeros((self.N,)), dtype=np.float64)
# assert acados_solver.acados_get_time_steps(self.capsule, self.N, <double *> old_time_steps.data)
# if np.array_equal(old_time_steps, new_time_steps):
# return
# N = new_time_steps.size
# cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(new_time_steps, dtype=np.float64)
# # check if recreation of acados is necessary (no need to recreate acados if sizes are identical)
# if len(old_time_steps) == N:
# assert acados_solver.acados_update_time_steps(self.capsule, N, <double *> value.data) == 0
# else: # recreate the solver with the new time steps
# self.solver_created = False
# # delete old memory (analog to __del__)
# acados_solver.acados_free(self.capsule)
# # create solver with new time steps
# assert acados_solver.acados_create_with_discretization(self.capsule, N, <double *> value.data) == 0
# self.solver_created = True
# # get pointers solver
# self.__get_pointers_solver()
# # store time_steps, N
# self.time_steps = new_time_steps
# self.N = N
def update_qp_solver_cond_N(self, qp_solver_cond_N: int):
"""
Recreate solver with new value `qp_solver_cond_N` with a partial condensing QP solver.
This function is relevant for code reuse, i.e., if either `set_new_time_steps(...)` is used or
the influence of a different `qp_solver_cond_N` is studied without code export and compilation.
:param qp_solver_cond_N: new number of condensing stages for the solver
.. note:: This function can only be used in combination with a partial condensing QP solver.
.. note:: After `set_new_time_steps(...)` is used and depending on the new number of time steps it might be
necessary to change `qp_solver_cond_N` as well (using this function), i.e., typically
`qp_solver_cond_N < N`.
"""
raise NotImplementedError("AcadosOcpSolverCython: does not support update_qp_solver_cond_N() since it is only a prototyping feature")
# # unlikely but still possible
# if not self.solver_created:
# raise Exception('Solver was not yet created!')
# if self.N < qp_solver_cond_N:
# raise Exception('Setting qp_solver_cond_N to be larger than N does not work!')
# if self.qp_solver_cond_N != qp_solver_cond_N:
# self.solver_created = False
# # recreate the solver
# acados_solver.acados_update_qp_solver_cond_N(self.capsule, qp_solver_cond_N)
# # store the new value
# self.qp_solver_cond_N = qp_solver_cond_N
# self.solver_created = True
# # get pointers solver
# self.__get_pointers_solver()
def eval_param_sens(self, index, stage=0, field="ex"):
"""
Calculate the sensitivity of the curent solution with respect to the initial state component of index
:param index: integer corresponding to initial state index in range(nx)
"""
field_ = field
field = field_.encode('utf-8')
# checks
if not isinstance(index, int):
raise Exception('AcadosOcpSolverCython.eval_param_sens(): index must be Integer.')
cdef int nx = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, 0, "x".encode('utf-8'))
if index < 0 or index > nx:
raise Exception(f'AcadosOcpSolverCython.eval_param_sens(): index must be in [0, nx-1], got: {index}.')
# actual eval_param
acados_solver_common.ocp_nlp_eval_param_sens(self.nlp_solver, field, stage, index, self.sens_out)
return
def get(self, int stage, str field_):
"""
Get the last solution of the solver:
:param stage: integer corresponding to shooting node
:param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',]
.. note:: regarding lam, t: \n
the inequalities are internally organized in the following order: \n
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
.. note:: pi: multipliers for dynamics equality constraints \n
lam: multipliers for inequalities \n
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
sl: slack variables of soft lower inequality constraints \n
su: slack variables of soft upper inequality constraints \n
"""
out_fields = ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su']
field = field_.encode('utf-8')
if field_ not in out_fields:
raise Exception('AcadosOcpSolverCython.get(): {} is an invalid argument.\
\n Possible values are {}.'.format(field_, out_fields))
if stage < 0 or stage > self.N:
raise Exception('AcadosOcpSolverCython.get(): stage index must be in [0, N], got: {}.'.format(self.N))
if stage == self.N and field_ == 'pi':
raise Exception('AcadosOcpSolverCython.get(): field {} does not exist at final stage {}.'\
.format(field_, stage))
cdef int dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
self.nlp_dims, self.nlp_out, stage, field)
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.zeros((dims,))
acados_solver_common.ocp_nlp_out_get(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage, field, <void *> out.data)
return out
def print_statistics(self):
"""
prints statistics of previous solver run as a table:
- iter: iteration number
- res_stat: stationarity residual
- res_eq: residual wrt equality constraints (dynamics)
- res_ineq: residual wrt inequality constraints (constraints)
- res_comp: residual wrt complementarity conditions
- qp_stat: status of QP solver
- qp_iter: number of QP iterations
- qp_res_stat: stationarity residual of the last QP solution
- qp_res_eq: residual wrt equality constraints (dynamics) of the last QP solution
- qp_res_ineq: residual wrt inequality constraints (constraints) of the last QP solution
- qp_res_comp: residual wrt complementarity conditions of the last QP solution
"""
acados_solver.acados_print_stats(self.capsule)
def store_iterate(self, filename='', overwrite=False):
"""
Stores the current iterate of the ocp solver in a json file.
:param filename: if not set, use model_name + timestamp + '.json'
:param overwrite: if false and filename exists add timestamp to filename
"""
import json
if filename == '':
filename += self.model_name + '_' + 'iterate' + '.json'
if not overwrite:
# append timestamp
if os.path.isfile(filename):
filename = filename[:-5]
filename += datetime.utcnow().strftime('%Y-%m-%d-%H:%M:%S.%f') + '.json'
# get iterate:
solution = dict()
lN = len(str(self.N+1))
for i in range(self.N+1):
i_string = f'{i:0{lN}d}'
solution['x_'+i_string] = self.get(i,'x')
solution['u_'+i_string] = self.get(i,'u')
solution['z_'+i_string] = self.get(i,'z')
solution['lam_'+i_string] = self.get(i,'lam')
solution['t_'+i_string] = self.get(i, 't')
solution['sl_'+i_string] = self.get(i, 'sl')
solution['su_'+i_string] = self.get(i, 'su')
if i < self.N:
solution['pi_'+i_string] = self.get(i,'pi')
for k in list(solution.keys()):
if len(solution[k]) == 0:
del solution[k]
# save
with open(filename, 'w') as f:
json.dump(solution, f, default=lambda x: x.tolist(), indent=4, sort_keys=True)
print("stored current iterate in ", os.path.join(os.getcwd(), filename))
def load_iterate(self, filename):
"""
Loads the iterate stored in json file with filename into the ocp solver.
"""
import json
if not os.path.isfile(filename):
raise Exception('load_iterate: failed, file does not exist: ' + os.path.join(os.getcwd(), filename))
with open(filename, 'r') as f:
solution = json.load(f)
for key in solution.keys():
(field, stage) = key.split('_')
self.set(int(stage), field, np.array(solution[key]))
def get_stats(self, field_):
"""
Get the information of the last solver call.
:param field: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter']
Available fileds:
- time_tot: total CPU time previous call
- time_lin: CPU time for linearization
- time_sim: CPU time for integrator
- time_sim_ad: CPU time for integrator contribution of external function calls
- time_sim_la: CPU time for integrator contribution of linear algebra
- time_qp: CPU time qp solution
- time_qp_solver_call: CPU time inside qp solver (without converting the QP)
- time_qp_xcond: time_glob: CPU time globalization
- time_solution_sensitivities: CPU time for previous call to eval_param_sens
- time_reg: CPU time regularization
- sqp_iter: number of SQP iterations
- qp_iter: vector of QP iterations for last SQP call
- statistics: table with info about last iteration
- stat_m: number of rows in statistics matrix
- stat_n: number of columns in statistics matrix
- residuals: residuals of last iterate
- alpha: step sizes of SQP iterations
"""
double_fields = ['time_tot',
'time_lin',
'time_sim',
'time_sim_ad',
'time_sim_la',
'time_qp',
'time_qp_solver_call',
'time_qp_xcond',
'time_glob',
'time_solution_sensitivities',
'time_reg'
]
fields = double_fields + [
'sqp_iter',
'qp_iter',
'statistics',
'stat_m',
'stat_n',
'residuals',
'alpha',
]
field = field_.encode('utf-8')
if field_ in ['sqp_iter', 'stat_m', 'stat_n']:
return self.__get_stat_int(field)
elif field_ in double_fields:
return self.__get_stat_double(field)
elif field_ == 'statistics':
sqp_iter = self.get_stats("sqp_iter")
stat_m = self.get_stats("stat_m")
stat_n = self.get_stats("stat_n")
min_size = min([stat_m, sqp_iter+1])
return self.__get_stat_matrix(field, stat_n+1, min_size)
elif field_ == 'qp_iter':
full_stats = self.get_stats('statistics')
if self.nlp_solver_type == 'SQP':
return full_stats[6, :]
elif self.nlp_solver_type == 'SQP_RTI':
return full_stats[2, :]
elif field_ == 'alpha':
full_stats = self.get_stats('statistics')
if self.nlp_solver_type == 'SQP':
return full_stats[7, :]
else: # self.nlp_solver_type == 'SQP_RTI':
raise Exception("alpha values are not available for SQP_RTI")
elif field_ == 'residuals':
return self.get_residuals()
else:
raise NotImplementedError("TODO!")
def __get_stat_int(self, field):
cdef int out
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &out)
return out
def __get_stat_double(self, field):
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.zeros((1,))
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out.data)
return out
def __get_stat_matrix(self, field, n, m):
cdef cnp.ndarray[cnp.float64_t, ndim=2] out_mat = np.ascontiguousarray(np.zeros((n, m)), dtype=np.float64)
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out_mat.data)
return out_mat
def get_cost(self):
"""
Returns the cost value of the current solution.
"""
# compute cost internally
acados_solver_common.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
# create output
cdef double out
# call getter
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, "cost_value", <void *> &out)
return out
def get_residuals(self, recompute=False):
"""
Returns an array of the form [res_stat, res_eq, res_ineq, res_comp].
"""
# compute residuals if RTI
if self.nlp_solver_type == 'SQP_RTI' or recompute:
acados_solver_common.ocp_nlp_eval_residuals(self.nlp_solver, self.nlp_in, self.nlp_out)
# create output array
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.ascontiguousarray(np.zeros((4,), dtype=np.float64))
cdef double double_value
field = "res_stat".encode('utf-8')
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
out[0] = double_value
field = "res_eq".encode('utf-8')
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
out[1] = double_value
field = "res_ineq".encode('utf-8')
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
out[2] = double_value
field = "res_comp".encode('utf-8')
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
out[3] = double_value
return out
# Note: this function should not be used anymore, better use cost_set, constraints_set
def set(self, int stage, str field_, value_):
"""
Set numerical data inside the solver.
:param stage: integer corresponding to shooting node
:param field: string in ['x', 'u', 'pi', 'lam', 't', 'p']
.. note:: regarding lam, t: \n
the inequalities are internally organized in the following order: \n
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
.. note:: pi: multipliers for dynamics equality constraints \n
lam: multipliers for inequalities \n
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
sl: slack variables of soft lower inequality constraints \n
su: slack variables of soft upper inequality constraints \n
"""
if not isinstance(value_, np.ndarray):
raise Exception(f"set: value must be numpy array, got {type(value_)}.")
cost_fields = ['y_ref', 'yref']
constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
out_fields = ['x', 'u', 'pi', 'lam', 't', 'z', 'sl', 'su']
mem_fields = ['xdot_guess', 'z_guess']
field = field_.encode('utf-8')
cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(value_, dtype=np.float64)
# treat parameters separately
if field_ == 'p':
assert acados_solver.acados_update_params(self.capsule, stage, <double *> value.data, value.shape[0]) == 0
else:
if field_ not in constraints_fields + cost_fields + out_fields:
raise Exception("AcadosOcpSolverCython.set(): {} is not a valid argument.\
\nPossible values are {}.".format(field, \
constraints_fields + cost_fields + out_fields + ['p']))
dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
self.nlp_dims, self.nlp_out, stage, field)
if value_.shape[0] != dims:
msg = 'AcadosOcpSolverCython.set(): mismatching dimension for field "{}" '.format(field_)
msg += 'with dimension {} (you have {})'.format(dims, value_.shape[0])
raise Exception(msg)
if field_ in constraints_fields:
acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config,
self.nlp_dims, self.nlp_in, stage, field, <void *> value.data)
elif field_ in cost_fields:
acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config,
self.nlp_dims, self.nlp_in, stage, field, <void *> value.data)
elif field_ in out_fields:
acados_solver_common.ocp_nlp_out_set(self.nlp_config,
self.nlp_dims, self.nlp_out, stage, field, <void *> value.data)
elif field_ in mem_fields:
acados_solver_common.ocp_nlp_set(self.nlp_config, \
self.nlp_solver, stage, field, <void *> value.data)
if field_ == 'z':
field = 'z_guess'.encode('utf-8')
acados_solver_common.ocp_nlp_set(self.nlp_config, \
self.nlp_solver, stage, field, <void *> value.data)
return
def cost_set(self, int stage, str field_, value_):
"""
Set numerical data in the cost module of the solver.
:param stage: integer corresponding to shooting node
:param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
:param value: of appropriate size
"""
if not isinstance(value_, np.ndarray):
raise Exception(f"cost_set: value must be numpy array, got {type(value_)}.")
field = field_.encode('utf-8')
cdef int dims[2]
acados_solver_common.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage, field, &dims[0])
cdef double[::1,:] value
value_shape = value_.shape
if len(value_shape) == 1:
value_shape = (value_shape[0], 0)
value = np.asfortranarray(value_[None,:])
elif len(value_shape) == 2:
# Get elements in column major order
value = np.asfortranarray(value_)
if value_shape[0] != dims[0] or value_shape[1] != dims[1]:
raise Exception('AcadosOcpSolverCython.cost_set(): mismatching dimension' +
f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config, \
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
def constraints_set(self, int stage, str field_, value_):
"""
Set numerical data in the constraint module of the solver.
:param stage: integer corresponding to shooting node
:param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi', 'C', 'D']
:param value: of appropriate size
"""
if not isinstance(value_, np.ndarray):
raise Exception(f"constraints_set: value must be numpy array, got {type(value_)}.")
field = field_.encode('utf-8')
cdef int dims[2]
acados_solver_common.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage, field, &dims[0])
cdef double[::1,:] value
value_shape = value_.shape
if len(value_shape) == 1:
value_shape = (value_shape[0], 0)
value = np.asfortranarray(value_[None,:])
elif len(value_shape) == 2:
# Get elements in column major order
value = np.asfortranarray(value_)
if value_shape != tuple(dims):
raise Exception(f'AcadosOcpSolverCython.constraints_set(): mismatching dimension' +
f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config, \
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
return
def get_from_qp_in(self, int stage, str field_):
"""
Get numerical data from the dynamics module of the solver:
:param stage: integer corresponding to shooting node
:param field: string, e.g. 'A'
"""
field = field_.encode('utf-8')
# get dims
cdef int[2] dims
acados_solver_common.ocp_nlp_qp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, stage, field, &dims[0])
# create output data
cdef cnp.ndarray[cnp.float64_t, ndim=2] out = np.zeros((dims[0], dims[1]), order='F')
# call getter
acados_solver_common.ocp_nlp_get_at_stage(self.nlp_config, self.nlp_dims, self.nlp_solver, stage, field, <void *> out.data)
return out
def options_set(self, str field_, value_):
"""
Set options of the solver.
:param field: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length', 'alpha_min', 'alpha_reduction', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0'
:param value: of type int, float, string
- qp_tol_stat: QP solver tolerance stationarity
- qp_tol_eq: QP solver tolerance equalities
- qp_tol_ineq: QP solver tolerance inequalities
- qp_tol_comp: QP solver tolerance complementarity
- qp_tau_min: for HPIPM QP solvers: minimum value of barrier parameter in HPIPM
- qp_mu0: for HPIPM QP solvers: initial value for complementarity slackness
- warm_start_first_qp: indicates if first QP in SQP is warm_started
"""
int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'warm_start_first_qp']
double_fields = ['step_length', 'tol_eq', 'tol_stat', 'tol_ineq', 'tol_comp', 'alpha_min', 'alpha_reduction', 'eps_sufficient_descent',
'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0']
string_fields = ['globalization']
# encode
field = field_.encode('utf-8')
cdef int int_value
cdef double double_value
cdef unsigned char[::1] string_value
# check field availability and type
if field_ in int_fields:
if not isinstance(value_, int):
raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_)))
if field_ == 'rti_phase':
if value_ < 0 or value_ > 2:
raise Exception('AcadosOcpSolverCython.solve(): argument \'rti_phase\' can '
'take only values 0, 1, 2 for SQP-RTI-type solvers')
if self.nlp_solver_type != 'SQP_RTI' and value_ > 0:
raise Exception('AcadosOcpSolverCython.solve(): argument \'rti_phase\' can '
'take only value 0 for SQP-type solvers')
int_value = value_
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &int_value)
elif field_ in double_fields:
if not isinstance(value_, float):
raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_)))
double_value = value_
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &double_value)
elif field_ in string_fields:
if not isinstance(value_, bytes):
raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_)))
string_value = value_.encode('utf-8')
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &string_value[0])
else:
raise Exception('AcadosOcpSolverCython.options_set() does not support field {}.'\
'\n Possible values are {}.'.format(field_, ', '.join(int_fields + double_fields + string_fields)))
def set_params_sparse(self, int stage, idx_values_, param_values_):
"""
set parameters of the solvers external function partially:
Pseudo: solver.param[idx_values_] = param_values_;
Parameters:
:param stage_: integer corresponding to shooting node
:param idx_values_: 0 based integer array corresponding to parameter indices to be set
:param param_values_: new parameter values as numpy array
"""
if not isinstance(param_values_, np.ndarray):
raise Exception('param_values_ must be np.array.')
if param_values_.shape[0] != len(idx_values_):
raise Exception(f'param_values_ and idx_values_ must be of the same size.' +
f' Got sizes idx {param_values_.shape[0]}, param_values {len(idx_values_)}.')
# n_update = c_int(len(param_values_))
# param_data = cast(param_values_.ctypes.data, POINTER(c_double))
# c_idx_values = np.ascontiguousarray(idx_values_, dtype=np.intc)
# idx_data = cast(c_idx_values.ctypes.data, POINTER(c_int))
# getattr(self.shared_lib, f"{self.model_name}_acados_update_params_sparse").argtypes = \
# [c_void_p, c_int, POINTER(c_int), POINTER(c_double), c_int]
# getattr(self.shared_lib, f"{self.model_name}_acados_update_params_sparse").restype = c_int
# getattr(self.shared_lib, f"{self.model_name}_acados_update_params_sparse") \
# (self.capsule, stage, idx_data, param_data, n_update)
cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(param_values_, dtype=np.float64)
# cdef cnp.ndarray[cnp.intc, ndim=1] idx = np.ascontiguousarray(idx_values_, dtype=np.intc)
# NOTE: this does throw an error somehow:
# ValueError: Buffer dtype mismatch, expected 'int object' but got 'int'
# cdef cnp.ndarray[cnp.int, ndim=1] idx = np.ascontiguousarray(idx_values_, dtype=np.intc)
cdef cnp.ndarray[cnp.int32_t, ndim=1] idx = np.ascontiguousarray(idx_values_, dtype=np.int32)
cdef int n_update = value.shape[0]
# print(f"in set_params_sparse Cython n_update {n_update}")
assert acados_solver.acados_update_params_sparse(self.capsule, stage, <int *> idx.data, <double *> value.data, n_update) == 0
return
def __del__(self):
if self.solver_created:
acados_solver.acados_free(self.capsule)
acados_solver.acados_free_capsule(self.capsule)