796 lines
33 KiB
Cython
796 lines
33 KiB
Cython
|
# -*- coding: future_fstrings -*-
|
||
|
#
|
||
|
# Copyright (c) The acados authors.
|
||
|
#
|
||
|
# This file is part of acados.
|
||
|
#
|
||
|
# The 2-Clause BSD License
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# 1. Redistributions of source code must retain the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer.
|
||
|
#
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer in the documentation
|
||
|
# and/or other materials provided with the distribution.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.;
|
||
|
#
|
||
|
# cython: language_level=3
|
||
|
# cython: profile=False
|
||
|
# distutils: language=c
|
||
|
|
||
|
cimport cython
|
||
|
from libc cimport string
|
||
|
|
||
|
cimport acados_solver_common
|
||
|
# TODO: make this import more clear? it is not a general solver, but problem specific.
|
||
|
cimport acados_solver
|
||
|
|
||
|
cimport numpy as cnp
|
||
|
|
||
|
import os
|
||
|
from datetime import datetime
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
cdef class AcadosOcpSolverCython:
|
||
|
"""
|
||
|
Class to interact with the acados ocp solver C object.
|
||
|
"""
|
||
|
|
||
|
cdef acados_solver.nlp_solver_capsule *capsule
|
||
|
cdef void *nlp_opts
|
||
|
cdef acados_solver_common.ocp_nlp_dims *nlp_dims
|
||
|
cdef acados_solver_common.ocp_nlp_config *nlp_config
|
||
|
cdef acados_solver_common.ocp_nlp_out *nlp_out
|
||
|
cdef acados_solver_common.ocp_nlp_out *sens_out
|
||
|
cdef acados_solver_common.ocp_nlp_in *nlp_in
|
||
|
cdef acados_solver_common.ocp_nlp_solver *nlp_solver
|
||
|
|
||
|
cdef bint solver_created
|
||
|
|
||
|
cdef str model_name
|
||
|
cdef int N
|
||
|
|
||
|
cdef str nlp_solver_type
|
||
|
|
||
|
def __cinit__(self, model_name, nlp_solver_type, N):
|
||
|
|
||
|
self.solver_created = False
|
||
|
|
||
|
self.N = N
|
||
|
self.model_name = model_name
|
||
|
self.nlp_solver_type = nlp_solver_type
|
||
|
|
||
|
# create capsule
|
||
|
self.capsule = acados_solver.acados_create_capsule()
|
||
|
|
||
|
# create solver
|
||
|
assert acados_solver.acados_create(self.capsule) == 0
|
||
|
self.solver_created = True
|
||
|
|
||
|
# get pointers solver
|
||
|
self.__get_pointers_solver()
|
||
|
|
||
|
|
||
|
def __get_pointers_solver(self):
|
||
|
"""
|
||
|
Private function to get the pointers for solver
|
||
|
"""
|
||
|
# get pointers solver
|
||
|
self.nlp_opts = acados_solver.acados_get_nlp_opts(self.capsule)
|
||
|
self.nlp_dims = acados_solver.acados_get_nlp_dims(self.capsule)
|
||
|
self.nlp_config = acados_solver.acados_get_nlp_config(self.capsule)
|
||
|
self.nlp_out = acados_solver.acados_get_nlp_out(self.capsule)
|
||
|
self.sens_out = acados_solver.acados_get_sens_out(self.capsule)
|
||
|
self.nlp_in = acados_solver.acados_get_nlp_in(self.capsule)
|
||
|
self.nlp_solver = acados_solver.acados_get_nlp_solver(self.capsule)
|
||
|
|
||
|
|
||
|
def solve_for_x0(self, x0_bar):
|
||
|
"""
|
||
|
Wrapper around `solve()` which sets initial state constraint, solves the OCP, and returns u0.
|
||
|
"""
|
||
|
self.set(0, "lbx", x0_bar)
|
||
|
self.set(0, "ubx", x0_bar)
|
||
|
|
||
|
status = self.solve()
|
||
|
|
||
|
if status == 2:
|
||
|
print("Warning: acados_ocp_solver reached maximum iterations.")
|
||
|
elif status != 0:
|
||
|
raise Exception(f'acados acados_ocp_solver returned status {status}')
|
||
|
|
||
|
u0 = self.get(0, "u")
|
||
|
return u0
|
||
|
|
||
|
|
||
|
def solve(self):
|
||
|
"""
|
||
|
Solve the ocp with current input.
|
||
|
"""
|
||
|
return acados_solver.acados_solve(self.capsule)
|
||
|
|
||
|
|
||
|
def reset(self, reset_qp_solver_mem=1):
|
||
|
"""
|
||
|
Sets current iterate to all zeros.
|
||
|
"""
|
||
|
return acados_solver.acados_reset(self.capsule, reset_qp_solver_mem)
|
||
|
|
||
|
|
||
|
def custom_update(self, data_):
|
||
|
"""
|
||
|
A custom function that can be implemented by a user to be called between solver calls.
|
||
|
By default this does nothing.
|
||
|
The idea is to have a convenient wrapper to do complex updates of parameters and numerical data efficiently in C,
|
||
|
in a function that is compiled into the solver library and can be conveniently used in the Python environment.
|
||
|
"""
|
||
|
data_len = len(data_)
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=1] data = np.ascontiguousarray(data_, dtype=np.float64)
|
||
|
|
||
|
return acados_solver.acados_custom_update(self.capsule, <double *> data.data, data_len)
|
||
|
|
||
|
|
||
|
def set_new_time_steps(self, new_time_steps):
|
||
|
"""
|
||
|
Set new time steps.
|
||
|
Recreates the solver if N changes.
|
||
|
|
||
|
:param new_time_steps: 1 dimensional np array of new time steps for the solver
|
||
|
|
||
|
.. note:: This allows for different use-cases: either set a new size of time-steps or a new distribution of
|
||
|
the shooting nodes without changing the number, e.g., to reach a different final time. Both cases
|
||
|
do not require a new code export and compilation.
|
||
|
"""
|
||
|
|
||
|
raise NotImplementedError("AcadosOcpSolverCython: does not support set_new_time_steps() since it is only a prototyping feature")
|
||
|
# # unlikely but still possible
|
||
|
# if not self.solver_created:
|
||
|
# raise Exception('Solver was not yet created!')
|
||
|
|
||
|
# ## check if time steps really changed in value
|
||
|
# # get time steps
|
||
|
# cdef cnp.ndarray[cnp.float64_t, ndim=1] old_time_steps = np.ascontiguousarray(np.zeros((self.N,)), dtype=np.float64)
|
||
|
# assert acados_solver.acados_get_time_steps(self.capsule, self.N, <double *> old_time_steps.data)
|
||
|
|
||
|
# if np.array_equal(old_time_steps, new_time_steps):
|
||
|
# return
|
||
|
|
||
|
# N = new_time_steps.size
|
||
|
# cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(new_time_steps, dtype=np.float64)
|
||
|
|
||
|
# # check if recreation of acados is necessary (no need to recreate acados if sizes are identical)
|
||
|
# if len(old_time_steps) == N:
|
||
|
# assert acados_solver.acados_update_time_steps(self.capsule, N, <double *> value.data) == 0
|
||
|
|
||
|
# else: # recreate the solver with the new time steps
|
||
|
# self.solver_created = False
|
||
|
|
||
|
# # delete old memory (analog to __del__)
|
||
|
# acados_solver.acados_free(self.capsule)
|
||
|
|
||
|
# # create solver with new time steps
|
||
|
# assert acados_solver.acados_create_with_discretization(self.capsule, N, <double *> value.data) == 0
|
||
|
|
||
|
# self.solver_created = True
|
||
|
|
||
|
# # get pointers solver
|
||
|
# self.__get_pointers_solver()
|
||
|
|
||
|
# # store time_steps, N
|
||
|
# self.time_steps = new_time_steps
|
||
|
# self.N = N
|
||
|
|
||
|
|
||
|
def update_qp_solver_cond_N(self, qp_solver_cond_N: int):
|
||
|
"""
|
||
|
Recreate solver with new value `qp_solver_cond_N` with a partial condensing QP solver.
|
||
|
This function is relevant for code reuse, i.e., if either `set_new_time_steps(...)` is used or
|
||
|
the influence of a different `qp_solver_cond_N` is studied without code export and compilation.
|
||
|
:param qp_solver_cond_N: new number of condensing stages for the solver
|
||
|
|
||
|
.. note:: This function can only be used in combination with a partial condensing QP solver.
|
||
|
|
||
|
.. note:: After `set_new_time_steps(...)` is used and depending on the new number of time steps it might be
|
||
|
necessary to change `qp_solver_cond_N` as well (using this function), i.e., typically
|
||
|
`qp_solver_cond_N < N`.
|
||
|
"""
|
||
|
raise NotImplementedError("AcadosOcpSolverCython: does not support update_qp_solver_cond_N() since it is only a prototyping feature")
|
||
|
|
||
|
# # unlikely but still possible
|
||
|
# if not self.solver_created:
|
||
|
# raise Exception('Solver was not yet created!')
|
||
|
# if self.N < qp_solver_cond_N:
|
||
|
# raise Exception('Setting qp_solver_cond_N to be larger than N does not work!')
|
||
|
# if self.qp_solver_cond_N != qp_solver_cond_N:
|
||
|
# self.solver_created = False
|
||
|
|
||
|
# # recreate the solver
|
||
|
# acados_solver.acados_update_qp_solver_cond_N(self.capsule, qp_solver_cond_N)
|
||
|
|
||
|
# # store the new value
|
||
|
# self.qp_solver_cond_N = qp_solver_cond_N
|
||
|
# self.solver_created = True
|
||
|
|
||
|
# # get pointers solver
|
||
|
# self.__get_pointers_solver()
|
||
|
|
||
|
|
||
|
def eval_param_sens(self, index, stage=0, field="ex"):
|
||
|
"""
|
||
|
Calculate the sensitivity of the curent solution with respect to the initial state component of index
|
||
|
|
||
|
:param index: integer corresponding to initial state index in range(nx)
|
||
|
"""
|
||
|
|
||
|
field_ = field
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
# checks
|
||
|
if not isinstance(index, int):
|
||
|
raise Exception('AcadosOcpSolverCython.eval_param_sens(): index must be Integer.')
|
||
|
|
||
|
cdef int nx = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, 0, "x".encode('utf-8'))
|
||
|
|
||
|
if index < 0 or index > nx:
|
||
|
raise Exception(f'AcadosOcpSolverCython.eval_param_sens(): index must be in [0, nx-1], got: {index}.')
|
||
|
|
||
|
# actual eval_param
|
||
|
acados_solver_common.ocp_nlp_eval_param_sens(self.nlp_solver, field, stage, index, self.sens_out)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def get(self, int stage, str field_):
|
||
|
"""
|
||
|
Get the last solution of the solver:
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',]
|
||
|
|
||
|
.. note:: regarding lam, t: \n
|
||
|
the inequalities are internally organized in the following order: \n
|
||
|
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
|
||
|
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
|
||
|
|
||
|
.. note:: pi: multipliers for dynamics equality constraints \n
|
||
|
lam: multipliers for inequalities \n
|
||
|
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
|
||
|
sl: slack variables of soft lower inequality constraints \n
|
||
|
su: slack variables of soft upper inequality constraints \n
|
||
|
"""
|
||
|
|
||
|
out_fields = ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su']
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
if field_ not in out_fields:
|
||
|
raise Exception('AcadosOcpSolverCython.get(): {} is an invalid argument.\
|
||
|
\n Possible values are {}.'.format(field_, out_fields))
|
||
|
|
||
|
if stage < 0 or stage > self.N:
|
||
|
raise Exception('AcadosOcpSolverCython.get(): stage index must be in [0, N], got: {}.'.format(self.N))
|
||
|
|
||
|
if stage == self.N and field_ == 'pi':
|
||
|
raise Exception('AcadosOcpSolverCython.get(): field {} does not exist at final stage {}.'\
|
||
|
.format(field_, stage))
|
||
|
|
||
|
cdef int dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
|
||
|
self.nlp_dims, self.nlp_out, stage, field)
|
||
|
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.zeros((dims,))
|
||
|
acados_solver_common.ocp_nlp_out_get(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage, field, <void *> out.data)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def print_statistics(self):
|
||
|
"""
|
||
|
prints statistics of previous solver run as a table:
|
||
|
- iter: iteration number
|
||
|
- res_stat: stationarity residual
|
||
|
- res_eq: residual wrt equality constraints (dynamics)
|
||
|
- res_ineq: residual wrt inequality constraints (constraints)
|
||
|
- res_comp: residual wrt complementarity conditions
|
||
|
- qp_stat: status of QP solver
|
||
|
- qp_iter: number of QP iterations
|
||
|
- qp_res_stat: stationarity residual of the last QP solution
|
||
|
- qp_res_eq: residual wrt equality constraints (dynamics) of the last QP solution
|
||
|
- qp_res_ineq: residual wrt inequality constraints (constraints) of the last QP solution
|
||
|
- qp_res_comp: residual wrt complementarity conditions of the last QP solution
|
||
|
"""
|
||
|
acados_solver.acados_print_stats(self.capsule)
|
||
|
|
||
|
|
||
|
def store_iterate(self, filename='', overwrite=False):
|
||
|
"""
|
||
|
Stores the current iterate of the ocp solver in a json file.
|
||
|
|
||
|
:param filename: if not set, use model_name + timestamp + '.json'
|
||
|
:param overwrite: if false and filename exists add timestamp to filename
|
||
|
"""
|
||
|
import json
|
||
|
if filename == '':
|
||
|
filename += self.model_name + '_' + 'iterate' + '.json'
|
||
|
|
||
|
if not overwrite:
|
||
|
# append timestamp
|
||
|
if os.path.isfile(filename):
|
||
|
filename = filename[:-5]
|
||
|
filename += datetime.utcnow().strftime('%Y-%m-%d-%H:%M:%S.%f') + '.json'
|
||
|
|
||
|
# get iterate:
|
||
|
solution = dict()
|
||
|
|
||
|
lN = len(str(self.N+1))
|
||
|
for i in range(self.N+1):
|
||
|
i_string = f'{i:0{lN}d}'
|
||
|
solution['x_'+i_string] = self.get(i,'x')
|
||
|
solution['u_'+i_string] = self.get(i,'u')
|
||
|
solution['z_'+i_string] = self.get(i,'z')
|
||
|
solution['lam_'+i_string] = self.get(i,'lam')
|
||
|
solution['t_'+i_string] = self.get(i, 't')
|
||
|
solution['sl_'+i_string] = self.get(i, 'sl')
|
||
|
solution['su_'+i_string] = self.get(i, 'su')
|
||
|
if i < self.N:
|
||
|
solution['pi_'+i_string] = self.get(i,'pi')
|
||
|
|
||
|
for k in list(solution.keys()):
|
||
|
if len(solution[k]) == 0:
|
||
|
del solution[k]
|
||
|
|
||
|
# save
|
||
|
with open(filename, 'w') as f:
|
||
|
json.dump(solution, f, default=lambda x: x.tolist(), indent=4, sort_keys=True)
|
||
|
print("stored current iterate in ", os.path.join(os.getcwd(), filename))
|
||
|
|
||
|
|
||
|
def load_iterate(self, filename):
|
||
|
"""
|
||
|
Loads the iterate stored in json file with filename into the ocp solver.
|
||
|
"""
|
||
|
import json
|
||
|
if not os.path.isfile(filename):
|
||
|
raise Exception('load_iterate: failed, file does not exist: ' + os.path.join(os.getcwd(), filename))
|
||
|
|
||
|
with open(filename, 'r') as f:
|
||
|
solution = json.load(f)
|
||
|
|
||
|
for key in solution.keys():
|
||
|
(field, stage) = key.split('_')
|
||
|
self.set(int(stage), field, np.array(solution[key]))
|
||
|
|
||
|
|
||
|
def get_stats(self, field_):
|
||
|
"""
|
||
|
Get the information of the last solver call.
|
||
|
|
||
|
:param field: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter']
|
||
|
Available fileds:
|
||
|
- time_tot: total CPU time previous call
|
||
|
- time_lin: CPU time for linearization
|
||
|
- time_sim: CPU time for integrator
|
||
|
- time_sim_ad: CPU time for integrator contribution of external function calls
|
||
|
- time_sim_la: CPU time for integrator contribution of linear algebra
|
||
|
- time_qp: CPU time qp solution
|
||
|
- time_qp_solver_call: CPU time inside qp solver (without converting the QP)
|
||
|
- time_qp_xcond: time_glob: CPU time globalization
|
||
|
- time_solution_sensitivities: CPU time for previous call to eval_param_sens
|
||
|
- time_reg: CPU time regularization
|
||
|
- sqp_iter: number of SQP iterations
|
||
|
- qp_iter: vector of QP iterations for last SQP call
|
||
|
- statistics: table with info about last iteration
|
||
|
- stat_m: number of rows in statistics matrix
|
||
|
- stat_n: number of columns in statistics matrix
|
||
|
- residuals: residuals of last iterate
|
||
|
- alpha: step sizes of SQP iterations
|
||
|
"""
|
||
|
|
||
|
double_fields = ['time_tot',
|
||
|
'time_lin',
|
||
|
'time_sim',
|
||
|
'time_sim_ad',
|
||
|
'time_sim_la',
|
||
|
'time_qp',
|
||
|
'time_qp_solver_call',
|
||
|
'time_qp_xcond',
|
||
|
'time_glob',
|
||
|
'time_solution_sensitivities',
|
||
|
'time_reg'
|
||
|
]
|
||
|
fields = double_fields + [
|
||
|
'sqp_iter',
|
||
|
'qp_iter',
|
||
|
'statistics',
|
||
|
'stat_m',
|
||
|
'stat_n',
|
||
|
'residuals',
|
||
|
'alpha',
|
||
|
]
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
if field_ in ['sqp_iter', 'stat_m', 'stat_n']:
|
||
|
return self.__get_stat_int(field)
|
||
|
|
||
|
elif field_ in double_fields:
|
||
|
return self.__get_stat_double(field)
|
||
|
|
||
|
elif field_ == 'statistics':
|
||
|
sqp_iter = self.get_stats("sqp_iter")
|
||
|
stat_m = self.get_stats("stat_m")
|
||
|
stat_n = self.get_stats("stat_n")
|
||
|
min_size = min([stat_m, sqp_iter+1])
|
||
|
return self.__get_stat_matrix(field, stat_n+1, min_size)
|
||
|
|
||
|
elif field_ == 'qp_iter':
|
||
|
full_stats = self.get_stats('statistics')
|
||
|
if self.nlp_solver_type == 'SQP':
|
||
|
return full_stats[6, :]
|
||
|
elif self.nlp_solver_type == 'SQP_RTI':
|
||
|
return full_stats[2, :]
|
||
|
|
||
|
elif field_ == 'alpha':
|
||
|
full_stats = self.get_stats('statistics')
|
||
|
if self.nlp_solver_type == 'SQP':
|
||
|
return full_stats[7, :]
|
||
|
else: # self.nlp_solver_type == 'SQP_RTI':
|
||
|
raise Exception("alpha values are not available for SQP_RTI")
|
||
|
|
||
|
elif field_ == 'residuals':
|
||
|
return self.get_residuals()
|
||
|
|
||
|
else:
|
||
|
raise NotImplementedError("TODO!")
|
||
|
|
||
|
|
||
|
def __get_stat_int(self, field):
|
||
|
cdef int out
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &out)
|
||
|
return out
|
||
|
|
||
|
def __get_stat_double(self, field):
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.zeros((1,))
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out.data)
|
||
|
return out
|
||
|
|
||
|
def __get_stat_matrix(self, field, n, m):
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=2] out_mat = np.ascontiguousarray(np.zeros((n, m)), dtype=np.float64)
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out_mat.data)
|
||
|
return out_mat
|
||
|
|
||
|
|
||
|
def get_cost(self):
|
||
|
"""
|
||
|
Returns the cost value of the current solution.
|
||
|
"""
|
||
|
# compute cost internally
|
||
|
acados_solver_common.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
|
||
|
|
||
|
# create output
|
||
|
cdef double out
|
||
|
|
||
|
# call getter
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, "cost_value", <void *> &out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def get_residuals(self, recompute=False):
|
||
|
"""
|
||
|
Returns an array of the form [res_stat, res_eq, res_ineq, res_comp].
|
||
|
"""
|
||
|
# compute residuals if RTI
|
||
|
if self.nlp_solver_type == 'SQP_RTI' or recompute:
|
||
|
acados_solver_common.ocp_nlp_eval_residuals(self.nlp_solver, self.nlp_in, self.nlp_out)
|
||
|
|
||
|
# create output array
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.ascontiguousarray(np.zeros((4,), dtype=np.float64))
|
||
|
cdef double double_value
|
||
|
|
||
|
field = "res_stat".encode('utf-8')
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
|
||
|
out[0] = double_value
|
||
|
|
||
|
field = "res_eq".encode('utf-8')
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
|
||
|
out[1] = double_value
|
||
|
|
||
|
field = "res_ineq".encode('utf-8')
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
|
||
|
out[2] = double_value
|
||
|
|
||
|
field = "res_comp".encode('utf-8')
|
||
|
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
|
||
|
out[3] = double_value
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
# Note: this function should not be used anymore, better use cost_set, constraints_set
|
||
|
def set(self, int stage, str field_, value_):
|
||
|
|
||
|
"""
|
||
|
Set numerical data inside the solver.
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string in ['x', 'u', 'pi', 'lam', 't', 'p']
|
||
|
|
||
|
.. note:: regarding lam, t: \n
|
||
|
the inequalities are internally organized in the following order: \n
|
||
|
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
|
||
|
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
|
||
|
|
||
|
.. note:: pi: multipliers for dynamics equality constraints \n
|
||
|
lam: multipliers for inequalities \n
|
||
|
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
|
||
|
sl: slack variables of soft lower inequality constraints \n
|
||
|
su: slack variables of soft upper inequality constraints \n
|
||
|
"""
|
||
|
if not isinstance(value_, np.ndarray):
|
||
|
raise Exception(f"set: value must be numpy array, got {type(value_)}.")
|
||
|
cost_fields = ['y_ref', 'yref']
|
||
|
constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
|
||
|
out_fields = ['x', 'u', 'pi', 'lam', 't', 'z', 'sl', 'su']
|
||
|
mem_fields = ['xdot_guess', 'z_guess']
|
||
|
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(value_, dtype=np.float64)
|
||
|
|
||
|
# treat parameters separately
|
||
|
if field_ == 'p':
|
||
|
assert acados_solver.acados_update_params(self.capsule, stage, <double *> value.data, value.shape[0]) == 0
|
||
|
else:
|
||
|
if field_ not in constraints_fields + cost_fields + out_fields:
|
||
|
raise Exception("AcadosOcpSolverCython.set(): {} is not a valid argument.\
|
||
|
\nPossible values are {}.".format(field, \
|
||
|
constraints_fields + cost_fields + out_fields + ['p']))
|
||
|
|
||
|
dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
|
||
|
self.nlp_dims, self.nlp_out, stage, field)
|
||
|
|
||
|
if value_.shape[0] != dims:
|
||
|
msg = 'AcadosOcpSolverCython.set(): mismatching dimension for field "{}" '.format(field_)
|
||
|
msg += 'with dimension {} (you have {})'.format(dims, value_.shape[0])
|
||
|
raise Exception(msg)
|
||
|
|
||
|
if field_ in constraints_fields:
|
||
|
acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config,
|
||
|
self.nlp_dims, self.nlp_in, stage, field, <void *> value.data)
|
||
|
elif field_ in cost_fields:
|
||
|
acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config,
|
||
|
self.nlp_dims, self.nlp_in, stage, field, <void *> value.data)
|
||
|
elif field_ in out_fields:
|
||
|
acados_solver_common.ocp_nlp_out_set(self.nlp_config,
|
||
|
self.nlp_dims, self.nlp_out, stage, field, <void *> value.data)
|
||
|
elif field_ in mem_fields:
|
||
|
acados_solver_common.ocp_nlp_set(self.nlp_config, \
|
||
|
self.nlp_solver, stage, field, <void *> value.data)
|
||
|
|
||
|
if field_ == 'z':
|
||
|
field = 'z_guess'.encode('utf-8')
|
||
|
acados_solver_common.ocp_nlp_set(self.nlp_config, \
|
||
|
self.nlp_solver, stage, field, <void *> value.data)
|
||
|
return
|
||
|
|
||
|
def cost_set(self, int stage, str field_, value_):
|
||
|
"""
|
||
|
Set numerical data in the cost module of the solver.
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
|
||
|
:param value: of appropriate size
|
||
|
"""
|
||
|
if not isinstance(value_, np.ndarray):
|
||
|
raise Exception(f"cost_set: value must be numpy array, got {type(value_)}.")
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
cdef int dims[2]
|
||
|
acados_solver_common.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage, field, &dims[0])
|
||
|
|
||
|
cdef double[::1,:] value
|
||
|
|
||
|
value_shape = value_.shape
|
||
|
if len(value_shape) == 1:
|
||
|
value_shape = (value_shape[0], 0)
|
||
|
value = np.asfortranarray(value_[None,:])
|
||
|
|
||
|
elif len(value_shape) == 2:
|
||
|
# Get elements in column major order
|
||
|
value = np.asfortranarray(value_)
|
||
|
|
||
|
if value_shape[0] != dims[0] or value_shape[1] != dims[1]:
|
||
|
raise Exception('AcadosOcpSolverCython.cost_set(): mismatching dimension' +
|
||
|
f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
|
||
|
|
||
|
acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
|
||
|
|
||
|
|
||
|
def constraints_set(self, int stage, str field_, value_):
|
||
|
"""
|
||
|
Set numerical data in the constraint module of the solver.
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi', 'C', 'D']
|
||
|
:param value: of appropriate size
|
||
|
"""
|
||
|
if not isinstance(value_, np.ndarray):
|
||
|
raise Exception(f"constraints_set: value must be numpy array, got {type(value_)}.")
|
||
|
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
cdef int dims[2]
|
||
|
acados_solver_common.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage, field, &dims[0])
|
||
|
|
||
|
cdef double[::1,:] value
|
||
|
|
||
|
value_shape = value_.shape
|
||
|
if len(value_shape) == 1:
|
||
|
value_shape = (value_shape[0], 0)
|
||
|
value = np.asfortranarray(value_[None,:])
|
||
|
|
||
|
elif len(value_shape) == 2:
|
||
|
# Get elements in column major order
|
||
|
value = np.asfortranarray(value_)
|
||
|
|
||
|
if value_shape != tuple(dims):
|
||
|
raise Exception(f'AcadosOcpSolverCython.constraints_set(): mismatching dimension' +
|
||
|
f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
|
||
|
|
||
|
acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def get_from_qp_in(self, int stage, str field_):
|
||
|
"""
|
||
|
Get numerical data from the dynamics module of the solver:
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string, e.g. 'A'
|
||
|
"""
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
# get dims
|
||
|
cdef int[2] dims
|
||
|
acados_solver_common.ocp_nlp_qp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, stage, field, &dims[0])
|
||
|
|
||
|
# create output data
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=2] out = np.zeros((dims[0], dims[1]), order='F')
|
||
|
|
||
|
# call getter
|
||
|
acados_solver_common.ocp_nlp_get_at_stage(self.nlp_config, self.nlp_dims, self.nlp_solver, stage, field, <void *> out.data)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def options_set(self, str field_, value_):
|
||
|
"""
|
||
|
Set options of the solver.
|
||
|
|
||
|
:param field: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length', 'alpha_min', 'alpha_reduction', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0'
|
||
|
|
||
|
:param value: of type int, float, string
|
||
|
|
||
|
- qp_tol_stat: QP solver tolerance stationarity
|
||
|
- qp_tol_eq: QP solver tolerance equalities
|
||
|
- qp_tol_ineq: QP solver tolerance inequalities
|
||
|
- qp_tol_comp: QP solver tolerance complementarity
|
||
|
- qp_tau_min: for HPIPM QP solvers: minimum value of barrier parameter in HPIPM
|
||
|
- qp_mu0: for HPIPM QP solvers: initial value for complementarity slackness
|
||
|
- warm_start_first_qp: indicates if first QP in SQP is warm_started
|
||
|
"""
|
||
|
int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'warm_start_first_qp']
|
||
|
double_fields = ['step_length', 'tol_eq', 'tol_stat', 'tol_ineq', 'tol_comp', 'alpha_min', 'alpha_reduction', 'eps_sufficient_descent',
|
||
|
'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0']
|
||
|
string_fields = ['globalization']
|
||
|
|
||
|
# encode
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
cdef int int_value
|
||
|
cdef double double_value
|
||
|
cdef unsigned char[::1] string_value
|
||
|
|
||
|
# check field availability and type
|
||
|
if field_ in int_fields:
|
||
|
if not isinstance(value_, int):
|
||
|
raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_)))
|
||
|
|
||
|
if field_ == 'rti_phase':
|
||
|
if value_ < 0 or value_ > 2:
|
||
|
raise Exception('AcadosOcpSolverCython.solve(): argument \'rti_phase\' can '
|
||
|
'take only values 0, 1, 2 for SQP-RTI-type solvers')
|
||
|
if self.nlp_solver_type != 'SQP_RTI' and value_ > 0:
|
||
|
raise Exception('AcadosOcpSolverCython.solve(): argument \'rti_phase\' can '
|
||
|
'take only value 0 for SQP-type solvers')
|
||
|
|
||
|
int_value = value_
|
||
|
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &int_value)
|
||
|
|
||
|
elif field_ in double_fields:
|
||
|
if not isinstance(value_, float):
|
||
|
raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_)))
|
||
|
|
||
|
double_value = value_
|
||
|
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &double_value)
|
||
|
|
||
|
elif field_ in string_fields:
|
||
|
if not isinstance(value_, bytes):
|
||
|
raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_)))
|
||
|
|
||
|
string_value = value_.encode('utf-8')
|
||
|
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &string_value[0])
|
||
|
|
||
|
else:
|
||
|
raise Exception('AcadosOcpSolverCython.options_set() does not support field {}.'\
|
||
|
'\n Possible values are {}.'.format(field_, ', '.join(int_fields + double_fields + string_fields)))
|
||
|
|
||
|
|
||
|
def set_params_sparse(self, int stage, idx_values_, param_values_):
|
||
|
"""
|
||
|
set parameters of the solvers external function partially:
|
||
|
Pseudo: solver.param[idx_values_] = param_values_;
|
||
|
Parameters:
|
||
|
:param stage_: integer corresponding to shooting node
|
||
|
:param idx_values_: 0 based integer array corresponding to parameter indices to be set
|
||
|
:param param_values_: new parameter values as numpy array
|
||
|
"""
|
||
|
|
||
|
if not isinstance(param_values_, np.ndarray):
|
||
|
raise Exception('param_values_ must be np.array.')
|
||
|
|
||
|
if param_values_.shape[0] != len(idx_values_):
|
||
|
raise Exception(f'param_values_ and idx_values_ must be of the same size.' +
|
||
|
f' Got sizes idx {param_values_.shape[0]}, param_values {len(idx_values_)}.')
|
||
|
|
||
|
# n_update = c_int(len(param_values_))
|
||
|
|
||
|
# param_data = cast(param_values_.ctypes.data, POINTER(c_double))
|
||
|
# c_idx_values = np.ascontiguousarray(idx_values_, dtype=np.intc)
|
||
|
# idx_data = cast(c_idx_values.ctypes.data, POINTER(c_int))
|
||
|
|
||
|
# getattr(self.shared_lib, f"{self.model_name}_acados_update_params_sparse").argtypes = \
|
||
|
# [c_void_p, c_int, POINTER(c_int), POINTER(c_double), c_int]
|
||
|
# getattr(self.shared_lib, f"{self.model_name}_acados_update_params_sparse").restype = c_int
|
||
|
# getattr(self.shared_lib, f"{self.model_name}_acados_update_params_sparse") \
|
||
|
# (self.capsule, stage, idx_data, param_data, n_update)
|
||
|
|
||
|
cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(param_values_, dtype=np.float64)
|
||
|
# cdef cnp.ndarray[cnp.intc, ndim=1] idx = np.ascontiguousarray(idx_values_, dtype=np.intc)
|
||
|
|
||
|
# NOTE: this does throw an error somehow:
|
||
|
# ValueError: Buffer dtype mismatch, expected 'int object' but got 'int'
|
||
|
# cdef cnp.ndarray[cnp.int, ndim=1] idx = np.ascontiguousarray(idx_values_, dtype=np.intc)
|
||
|
|
||
|
cdef cnp.ndarray[cnp.int32_t, ndim=1] idx = np.ascontiguousarray(idx_values_, dtype=np.int32)
|
||
|
cdef int n_update = value.shape[0]
|
||
|
# print(f"in set_params_sparse Cython n_update {n_update}")
|
||
|
|
||
|
assert acados_solver.acados_update_params_sparse(self.capsule, stage, <int *> idx.data, <double *> value.data, n_update) == 0
|
||
|
return
|
||
|
|
||
|
|
||
|
def __del__(self):
|
||
|
if self.solver_created:
|
||
|
acados_solver.acados_free(self.capsule)
|
||
|
acados_solver.acados_free_capsule(self.capsule)
|