openpilot0/common/stat_live.py

74 lines
1.8 KiB
Python

import numpy as np
class RunningStat():
# tracks realtime mean and standard deviation without storing any data
def __init__(self, priors=None, max_trackable=-1):
self.max_trackable = max_trackable
if priors is not None:
# initialize from history
self.M = priors[0]
self.S = priors[1]
self.n = priors[2]
self.M_last = self.M
self.S_last = self.S
else:
self.reset()
def reset(self):
self.M = 0.
self.S = 0.
self.M_last = 0.
self.S_last = 0.
self.n = 0
def push_data(self, new_data):
# short term memory hack
if self.max_trackable < 0 or self.n < self.max_trackable:
self.n += 1
if self.n == 0:
self.M_last = new_data
self.M = self.M_last
self.S_last = 0.
else:
self.M = self.M_last + (new_data - self.M_last) / self.n
self.S = self.S_last + (new_data - self.M_last) * (new_data - self.M);
self.M_last = self.M
self.S_last = self.S
def mean(self):
return self.M
def variance(self):
if self.n >= 2:
return self.S / (self.n - 1.)
else:
return 0
def std(self):
return np.sqrt(self.variance())
def params_to_save(self):
return [self.M, self.S, self.n]
class RunningStatFilter():
def __init__(self, raw_priors=None, filtered_priors=None, max_trackable=-1):
self.raw_stat = RunningStat(raw_priors, -1)
self.filtered_stat = RunningStat(filtered_priors, max_trackable)
def reset(self):
self.raw_stat.reset()
self.filtered_stat.reset()
def push_and_update(self, new_data):
_std_last = self.raw_stat.std()
self.raw_stat.push_data(new_data)
_delta_std = self.raw_stat.std() - _std_last
if _delta_std<=0:
self.filtered_stat.push_data(new_data)
else:
pass
# self.filtered_stat.push_data(self.filtered_stat.mean())
# class SequentialBayesian():