openpilot0/selfdrive/controls/lib/vehicle_model.py

231 lines
6.2 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Dynamic bicycle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani"
The state is x = [v, r]^T
with v lateral speed [m/s], and r rotational speed [rad/s]
The input u is the steering angle [rad], and roll [rad]
The system is defined by
x_dot = A*x + B*u
A depends on longitudinal speed, u [m/s], and vehicle parameters CP
"""
import numpy as np
from numpy.linalg import solve
from cereal import car
ACCELERATION_DUE_TO_GRAVITY = 9.8
class VehicleModel:
def __init__(self, CP: car.CarParams):
"""
Args:
CP: Car Parameters
"""
# for math readability, convert long names car params into short names
self.m: float = CP.mass
self.j: float = CP.rotationalInertia
self.l: float = CP.wheelbase
self.aF: float = CP.centerToFront
self.aR: float = CP.wheelbase - CP.centerToFront
self.chi: float = CP.steerRatioRear
self.cF_orig: float = CP.tireStiffnessFront
self.cR_orig: float = CP.tireStiffnessRear
self.update_params(1.0, CP.steerRatio)
def update_params(self, stiffness_factor: float, steer_ratio: float) -> None:
"""Update the vehicle model with a new stiffness factor and steer ratio"""
self.cF: float = stiffness_factor * self.cF_orig
self.cR: float = stiffness_factor * self.cR_orig
self.sR: float = steer_ratio
def steady_state_sol(self, sa: float, u: float, roll: float) -> np.ndarray:
"""Returns the steady state solution.
If the speed is too low we can't use the dynamic model (tire slip is undefined),
we then have to use the kinematic model
Args:
sa: Steering wheel angle [rad]
u: Speed [m/s]
roll: Road Roll [rad]
Returns:
2x1 matrix with steady state solution (lateral speed, rotational speed)
"""
if u > 0.1:
return dyn_ss_sol(sa, u, roll, self)
else:
return kin_ss_sol(sa, u, self)
def calc_curvature(self, sa: float, u: float, roll: float) -> float:
"""Returns the curvature. Multiplied by the speed this will give the yaw rate.
Args:
sa: Steering wheel angle [rad]
u: Speed [m/s]
roll: Road Roll [rad]
Returns:
Curvature factor [1/m]
"""
return (self.curvature_factor(u) * sa / self.sR) + self.roll_compensation(roll, u)
def curvature_factor(self, u: float) -> float:
"""Returns the curvature factor.
Multiplied by wheel angle (not steering wheel angle) this will give the curvature.
Args:
u: Speed [m/s]
Returns:
Curvature factor [1/m]
"""
sf = calc_slip_factor(self)
return (1. - self.chi) / (1. - sf * u**2) / self.l
def get_steer_from_curvature(self, curv: float, u: float, roll: float) -> float:
"""Calculates the required steering wheel angle for a given curvature
Args:
curv: Desired curvature [1/m]
u: Speed [m/s]
roll: Road Roll [rad]
Returns:
Steering wheel angle [rad]
"""
return (curv - self.roll_compensation(roll, u)) * self.sR * 1.0 / self.curvature_factor(u)
def roll_compensation(self, roll: float, u: float) -> float:
"""Calculates the roll-compensation to curvature
Args:
roll: Road Roll [rad]
u: Speed [m/s]
Returns:
Roll compensation curvature [rad]
"""
sf = calc_slip_factor(self)
if abs(sf) < 1e-6:
return 0
else:
return (ACCELERATION_DUE_TO_GRAVITY * roll) / ((1 / sf) - u**2)
def get_steer_from_yaw_rate(self, yaw_rate: float, u: float, roll: float) -> float:
"""Calculates the required steering wheel angle for a given yaw_rate
Args:
yaw_rate: Desired yaw rate [rad/s]
u: Speed [m/s]
roll: Road Roll [rad]
Returns:
Steering wheel angle [rad]
"""
curv = yaw_rate / u
return self.get_steer_from_curvature(curv, u, roll)
def yaw_rate(self, sa: float, u: float, roll: float) -> float:
"""Calculate yaw rate
Args:
sa: Steering wheel angle [rad]
u: Speed [m/s]
roll: Road Roll [rad]
Returns:
Yaw rate [rad/s]
"""
return self.calc_curvature(sa, u, roll) * u
def kin_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray:
"""Calculate the steady state solution at low speeds
At low speeds the tire slip is undefined, so a kinematic
model is used.
Args:
sa: Steering angle [rad]
u: Speed [m/s]
VM: Vehicle model
Returns:
2x1 matrix with steady state solution
"""
K = np.zeros((2, 1))
K[0, 0] = VM.aR / VM.sR / VM.l * u
K[1, 0] = 1. / VM.sR / VM.l * u
return K * sa
def create_dyn_state_matrices(u: float, VM: VehicleModel) -> tuple[np.ndarray, np.ndarray]:
"""Returns the A and B matrix for the dynamics system
Args:
u: Vehicle speed [m/s]
VM: Vehicle model
Returns:
A tuple with the 2x2 A matrix, and 2x2 B matrix
Parameters in the vehicle model:
cF: Tire stiffness Front [N/rad]
cR: Tire stiffness Front [N/rad]
aF: Distance from CG to front wheels [m]
aR: Distance from CG to rear wheels [m]
m: Mass [kg]
j: Rotational inertia [kg m^2]
sR: Steering ratio [-]
chi: Steer ratio rear [-]
"""
A = np.zeros((2, 2))
B = np.zeros((2, 2))
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
# Steering input
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
# Roll input
B[0, 1] = -ACCELERATION_DUE_TO_GRAVITY
return A, B
def dyn_ss_sol(sa: float, u: float, roll: float, VM: VehicleModel) -> np.ndarray:
"""Calculate the steady state solution when x_dot = 0,
Ax + Bu = 0 => x = -A^{-1} B u
Args:
sa: Steering angle [rad]
u: Speed [m/s]
roll: Road Roll [rad]
VM: Vehicle model
Returns:
2x1 matrix with steady state solution
"""
A, B = create_dyn_state_matrices(u, VM)
inp = np.array([[sa], [roll]])
return -solve(A, B) @ inp # type: ignore
def calc_slip_factor(VM: VehicleModel) -> float:
"""The slip factor is a measure of how the curvature changes with speed
it's positive for Oversteering vehicle, negative (usual case) otherwise.
"""
return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)