mirror of https://github.com/commaai/openpilot.git
24 lines
641 B
Python
24 lines
641 B
Python
import numpy as np
|
|
|
|
|
|
class KF1D:
|
|
# this EKF assumes constant covariance matrix, so calculations are much simpler
|
|
# the Kalman gain also needs to be precomputed using the control module
|
|
|
|
def __init__(self, x0, A, C, K):
|
|
self.x = x0
|
|
self.A = A
|
|
self.C = np.atleast_2d(C)
|
|
self.K = K
|
|
|
|
self.A_K = self.A - np.dot(self.K, self.C)
|
|
|
|
# K matrix needs to be pre-computed as follow:
|
|
# import control
|
|
# (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R)
|
|
# self.K = np.transpose(K)
|
|
|
|
def update(self, meas):
|
|
self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas)
|
|
return self.x
|