mirror of https://github.com/commaai/openpilot.git
182 lines
7.7 KiB
Python
Executable File
182 lines
7.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import math
|
|
import numpy as np
|
|
from openpilot.common.numpy_fast import clip, interp
|
|
|
|
import cereal.messaging as messaging
|
|
from opendbc.car.interfaces import ACCEL_MIN, ACCEL_MAX
|
|
from openpilot.common.conversions import Conversions as CV
|
|
from openpilot.common.filter_simple import FirstOrderFilter
|
|
from openpilot.common.realtime import DT_MDL
|
|
from openpilot.selfdrive.modeld.constants import ModelConstants
|
|
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
|
|
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
|
|
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
|
|
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, get_speed_error
|
|
from openpilot.selfdrive.car.cruise import V_CRUISE_MAX
|
|
from openpilot.common.swaglog import cloudlog
|
|
|
|
LON_MPC_STEP = 0.2 # first step is 0.2s
|
|
A_CRUISE_MIN = -1.2
|
|
A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
|
|
A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
|
|
CONTROL_N_T_IDX = ModelConstants.T_IDXS[:CONTROL_N]
|
|
|
|
# Lookup table for turns
|
|
_A_TOTAL_MAX_V = [1.7, 3.2]
|
|
_A_TOTAL_MAX_BP = [20., 40.]
|
|
|
|
|
|
def get_max_accel(v_ego):
|
|
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
|
|
|
|
|
|
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
|
|
"""
|
|
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
|
|
this should avoid accelerating when losing the target in turns
|
|
"""
|
|
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
|
|
# The lookup table for turns should also be updated if we do this
|
|
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
|
|
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
|
|
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
|
|
|
|
return [a_target[0], min(a_target[1], a_x_allowed)]
|
|
|
|
|
|
def get_accel_from_plan(CP, speeds, accels):
|
|
if len(speeds) == CONTROL_N:
|
|
v_target_now = interp(DT_MDL, CONTROL_N_T_IDX, speeds)
|
|
a_target_now = interp(DT_MDL, CONTROL_N_T_IDX, accels)
|
|
|
|
v_target = interp(CP.longitudinalActuatorDelay + DT_MDL, CONTROL_N_T_IDX, speeds)
|
|
a_target = 2 * (v_target - v_target_now) / CP.longitudinalActuatorDelay - a_target_now
|
|
|
|
v_target_1sec = interp(CP.longitudinalActuatorDelay + DT_MDL + 1.0, CONTROL_N_T_IDX, speeds)
|
|
else:
|
|
v_target = 0.0
|
|
v_target_1sec = 0.0
|
|
a_target = 0.0
|
|
should_stop = (v_target < CP.vEgoStopping and
|
|
v_target_1sec < CP.vEgoStopping)
|
|
return a_target, should_stop
|
|
|
|
|
|
class LongitudinalPlanner:
|
|
def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
|
|
self.CP = CP
|
|
self.mpc = LongitudinalMpc(dt=dt)
|
|
self.fcw = False
|
|
self.dt = dt
|
|
|
|
self.a_desired = init_a
|
|
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
|
|
self.v_model_error = 0.0
|
|
|
|
self.v_desired_trajectory = np.zeros(CONTROL_N)
|
|
self.a_desired_trajectory = np.zeros(CONTROL_N)
|
|
self.j_desired_trajectory = np.zeros(CONTROL_N)
|
|
self.solverExecutionTime = 0.0
|
|
|
|
@staticmethod
|
|
def parse_model(model_msg, model_error):
|
|
if (len(model_msg.position.x) == ModelConstants.IDX_N and
|
|
len(model_msg.velocity.x) == ModelConstants.IDX_N and
|
|
len(model_msg.acceleration.x) == ModelConstants.IDX_N):
|
|
x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
|
|
v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x) - model_error
|
|
a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x)
|
|
j = np.zeros(len(T_IDXS_MPC))
|
|
else:
|
|
x = np.zeros(len(T_IDXS_MPC))
|
|
v = np.zeros(len(T_IDXS_MPC))
|
|
a = np.zeros(len(T_IDXS_MPC))
|
|
j = np.zeros(len(T_IDXS_MPC))
|
|
return x, v, a, j
|
|
|
|
def update(self, sm):
|
|
self.mpc.mode = 'blended' if sm['selfdriveState'].experimentalMode else 'acc'
|
|
|
|
v_ego = sm['carState'].vEgo
|
|
v_cruise_kph = min(sm['carState'].vCruise, V_CRUISE_MAX)
|
|
v_cruise = v_cruise_kph * CV.KPH_TO_MS
|
|
|
|
long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
|
|
force_slow_decel = sm['controlsState'].forceDecel
|
|
|
|
# Reset current state when not engaged, or user is controlling the speed
|
|
reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['selfdriveState'].enabled
|
|
|
|
# No change cost when user is controlling the speed, or when standstill
|
|
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
|
|
|
|
if self.mpc.mode == 'acc':
|
|
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
|
|
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
|
|
else:
|
|
accel_limits = [ACCEL_MIN, ACCEL_MAX]
|
|
accel_limits_turns = [ACCEL_MIN, ACCEL_MAX]
|
|
|
|
if reset_state:
|
|
self.v_desired_filter.x = v_ego
|
|
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
|
|
self.a_desired = clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
|
|
|
|
# Prevent divergence, smooth in current v_ego
|
|
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
|
|
# Compute model v_ego error
|
|
self.v_model_error = get_speed_error(sm['modelV2'], v_ego)
|
|
|
|
if force_slow_decel:
|
|
v_cruise = 0.0
|
|
# clip limits, cannot init MPC outside of bounds
|
|
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
|
|
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
|
|
|
|
self.mpc.set_weights(prev_accel_constraint, personality=sm['selfdriveState'].personality)
|
|
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
|
|
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
|
|
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error)
|
|
self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=sm['selfdriveState'].personality)
|
|
|
|
self.v_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.v_solution)
|
|
self.a_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.a_solution)
|
|
self.j_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC[:-1], self.mpc.j_solution)
|
|
|
|
# TODO counter is only needed because radar is glitchy, remove once radar is gone
|
|
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill
|
|
if self.fcw:
|
|
cloudlog.info("FCW triggered")
|
|
|
|
# Interpolate 0.05 seconds and save as starting point for next iteration
|
|
a_prev = self.a_desired
|
|
self.a_desired = float(interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory))
|
|
self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
|
|
|
|
def publish(self, sm, pm):
|
|
plan_send = messaging.new_message('longitudinalPlan')
|
|
|
|
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'selfdriveState'])
|
|
|
|
longitudinalPlan = plan_send.longitudinalPlan
|
|
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
|
|
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
|
|
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
|
|
|
|
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
|
|
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
|
|
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
|
|
|
|
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
|
|
longitudinalPlan.longitudinalPlanSource = self.mpc.source
|
|
longitudinalPlan.fcw = self.fcw
|
|
|
|
a_target, should_stop = get_accel_from_plan(self.CP, longitudinalPlan.speeds, longitudinalPlan.accels)
|
|
longitudinalPlan.aTarget = a_target
|
|
longitudinalPlan.shouldStop = should_stop
|
|
longitudinalPlan.allowBrake = True
|
|
longitudinalPlan.allowThrottle = True
|
|
|
|
pm.send('longitudinalPlan', plan_send)
|