openpilot0/system/camerad/sensors/ox03c10.cc

133 lines
5.1 KiB
C++

#include <cmath>
#include "system/camerad/sensors/sensor.h"
namespace {
const float sensor_analog_gains_OX03C10[] = {
1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.6875,
1.8125, 1.9375, 2.0, 2.125, 2.25, 2.375, 2.5, 2.625, 2.75, 2.875, 3.0,
3.125, 3.375, 3.625, 3.875, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5,
5.75, 6.0, 6.25, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0,
10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5};
const uint32_t ox03c10_analog_gains_reg[] = {
0x100, 0x110, 0x120, 0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1B0,
0x1D0, 0x1F0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0, 0x300,
0x320, 0x360, 0x3A0, 0x3E0, 0x400, 0x440, 0x480, 0x4C0, 0x500, 0x540, 0x580,
0x5C0, 0x600, 0x640, 0x680, 0x700, 0x780, 0x800, 0x880, 0x900, 0x980, 0xA00,
0xA80, 0xB00, 0xB80, 0xC00, 0xC80, 0xD00, 0xD80, 0xE00, 0xE80, 0xF00, 0xF80};
const uint32_t VS_TIME_MIN_OX03C10 = 1;
const uint32_t VS_TIME_MAX_OX03C10 = 34; // vs < 35
} // namespace
OX03C10::OX03C10() {
image_sensor = cereal::FrameData::ImageSensor::OX03C10;
bayer_pattern = CAM_ISP_PATTERN_BAYER_GRGRGR;
pixel_size_mm = 0.003;
data_word = false;
frame_width = 1928;
frame_height = 1208;
frame_stride = (frame_width * 12 / 8) + 4;
extra_height = 16; // top 2 + bot 14
frame_offset = 2;
start_reg_array.assign(std::begin(start_reg_array_ox03c10), std::end(start_reg_array_ox03c10));
init_reg_array.assign(std::begin(init_array_ox03c10), std::end(init_array_ox03c10));
probe_reg_addr = 0x300a;
probe_expected_data = 0x5803;
bits_per_pixel = 12;
mipi_format = CAM_FORMAT_MIPI_RAW_12;
frame_data_type = 0x2c; // one is 0x2a, two are 0x2b
mclk_frequency = 24000000; //Hz
readout_time_ns = 14697000;
dc_gain_factor = 7.32;
dc_gain_min_weight = 1; // always on is fine
dc_gain_max_weight = 1;
dc_gain_on_grey = 0.9;
dc_gain_off_grey = 1.0;
exposure_time_min = 2; // 1x
exposure_time_max = 2016;
analog_gain_min_idx = 0x0;
analog_gain_rec_idx = 0x0; // 1x
analog_gain_max_idx = 0x36;
analog_gain_cost_delta = -1;
analog_gain_cost_low = 0.4;
analog_gain_cost_high = 6.4;
for (int i = 0; i <= analog_gain_max_idx; i++) {
sensor_analog_gains[i] = sensor_analog_gains_OX03C10[i];
}
min_ev = (exposure_time_min + VS_TIME_MIN_OX03C10) * sensor_analog_gains[analog_gain_min_idx];
max_ev = exposure_time_max * dc_gain_factor * sensor_analog_gains[analog_gain_max_idx];
target_grey_factor = 0.01;
black_level = 0;
color_correct_matrix = {
0x000000b6, 0x00000ff1, 0x00000fda,
0x00000fcc, 0x000000b9, 0x00000ffb,
0x00000fc2, 0x00000ff6, 0x000000c9,
};
for (int i = 0; i < 65; i++) {
float fx = i / 64.0;
fx = -0.507089*exp(-12.54124638*fx) + 0.9655*pow(fx, 0.5) - 0.472597*fx + 0.507089;
gamma_lut_rgb.push_back((uint32_t)(fx*1023.0 + 0.5));
}
prepare_gamma_lut();
linearization_lut = {
0x00200000, 0x00200000, 0x00200000, 0x00200000,
0x00404080, 0x00404080, 0x00404080, 0x00404080,
0x00804100, 0x00804100, 0x00804100, 0x00804100,
0x02014402, 0x02014402, 0x02014402, 0x02014402,
0x0402c804, 0x0402c804, 0x0402c804, 0x0402c804,
0x0805d00a, 0x0805d00a, 0x0805d00a, 0x0805d00a,
0x100ba015, 0x100ba015, 0x100ba015, 0x100ba015,
0x00003fff, 0x00003fff, 0x00003fff, 0x00003fff,
0x00003fff, 0x00003fff, 0x00003fff, 0x00003fff,
};
for (int i = 0; i < 252; i++) {
linearization_lut.push_back(0x0);
}
linearization_pts = {0x07ff0bff, 0x17ff1bff, 0x1fff23ff, 0x27ff3fff};
for (int i = 0; i < 884*2; i++) {
vignetting_lut.push_back(0xff);
}
}
std::vector<i2c_random_wr_payload> OX03C10::getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const {
// t_HCG&t_LCG + t_VS on LPD, t_SPD on SPD
uint32_t hcg_time = exposure_time;
uint32_t lcg_time = hcg_time;
uint32_t spd_time = std::min(std::max((uint32_t)exposure_time, (exposure_time_max + VS_TIME_MAX_OX03C10) / 3), exposure_time_max + VS_TIME_MAX_OX03C10);
uint32_t vs_time = std::min(std::max((uint32_t)exposure_time / 40, VS_TIME_MIN_OX03C10), VS_TIME_MAX_OX03C10);
uint32_t real_gain = ox03c10_analog_gains_reg[new_exp_g];
return {
{0x3501, hcg_time>>8}, {0x3502, hcg_time&0xFF},
{0x3581, lcg_time>>8}, {0x3582, lcg_time&0xFF},
{0x3541, spd_time>>8}, {0x3542, spd_time&0xFF},
{0x35c2, vs_time&0xFF},
{0x3508, real_gain>>8}, {0x3509, real_gain&0xFF},
};
}
int OX03C10::getSlaveAddress(int port) const {
assert(port >= 0 && port <= 2);
return (int[]){0x6C, 0x20, 0x6C}[port];
}
float OX03C10::getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const {
float score = std::abs(desired_ev - (exp_t * exp_gain));
float m = exp_g_idx > analog_gain_rec_idx ? analog_gain_cost_high : analog_gain_cost_low;
score += std::abs(exp_g_idx - (int)analog_gain_rec_idx) * m;
score += ((1 - analog_gain_cost_delta) +
analog_gain_cost_delta * (exp_g_idx - analog_gain_min_idx) / (analog_gain_max_idx - analog_gain_min_idx)) *
std::abs(exp_g_idx - gain_idx) * 5.0;
return score;
}