openpilot0/system/camerad/sensors/ar0231.cc

214 lines
7.9 KiB
C++

#include <cassert>
#include <cmath>
#include "common/swaglog.h"
#include "system/camerad/sensors/sensor.h"
namespace {
const size_t AR0231_REGISTERS_HEIGHT = 2;
// TODO: this extra height is universal and doesn't apply per camera
const size_t AR0231_STATS_HEIGHT = 2 + 8;
const float sensor_analog_gains_AR0231[] = {
1.0 / 8.0, 2.0 / 8.0, 2.0 / 7.0, 3.0 / 7.0, // 0, 1, 2, 3
3.0 / 6.0, 4.0 / 6.0, 4.0 / 5.0, 5.0 / 5.0, // 4, 5, 6, 7
5.0 / 4.0, 6.0 / 4.0, 6.0 / 3.0, 7.0 / 3.0, // 8, 9, 10, 11
7.0 / 2.0, 8.0 / 2.0, 8.0 / 1.0}; // 12, 13, 14, 15 = bypass
std::map<uint16_t, std::pair<int, int>> ar0231_build_register_lut(const AR0231 *s, uint8_t *data) {
// This function builds a lookup table from register address, to a pair of indices in the
// buffer where to read this address. The buffer contains padding bytes,
// as well as markers to indicate the type of the next byte.
//
// 0xAA is used to indicate the MSB of the address, 0xA5 for the LSB of the address.
// Every byte of data (MSB and LSB) is preceded by 0x5A. Specifying an address is optional
// for contiguous ranges. See page 27-29 of the AR0231 Developer guide for more information.
int max_i[] = {1828 / 2 * 3, 1500 / 2 * 3};
auto get_next_idx = [](int cur_idx) {
return (cur_idx % 3 == 1) ? cur_idx + 2 : cur_idx + 1; // Every third byte is padding
};
std::map<uint16_t, std::pair<int, int>> registers;
for (int register_row = 0; register_row < 2; register_row++) {
uint8_t *registers_raw = data + s->frame_stride * register_row;
assert(registers_raw[0] == 0x0a); // Start of line
int value_tag_count = 0;
int first_val_idx = 0;
uint16_t cur_addr = 0;
for (int i = 1; i <= max_i[register_row]; i = get_next_idx(get_next_idx(i))) {
int val_idx = get_next_idx(i);
uint8_t tag = registers_raw[i];
uint16_t val = registers_raw[val_idx];
if (tag == 0xAA) { // Register MSB tag
cur_addr = val << 8;
} else if (tag == 0xA5) { // Register LSB tag
cur_addr |= val;
cur_addr -= 2; // Next value tag will increment address again
} else if (tag == 0x5A) { // Value tag
// First tag
if (value_tag_count % 2 == 0) {
cur_addr += 2;
first_val_idx = val_idx;
} else {
registers[cur_addr] = std::make_pair(first_val_idx + s->frame_stride * register_row, val_idx + s->frame_stride * register_row);
}
value_tag_count++;
}
}
}
return registers;
}
float ar0231_parse_temp_sensor(uint16_t calib1, uint16_t calib2, uint16_t data_reg) {
// See AR0231 Developer Guide - page 36
float slope = (125.0 - 55.0) / ((float)calib1 - (float)calib2);
float t0 = 55.0 - slope * (float)calib2;
return t0 + slope * (float)data_reg;
}
} // namespace
AR0231::AR0231() {
image_sensor = cereal::FrameData::ImageSensor::AR0231;
bayer_pattern = CAM_ISP_PATTERN_BAYER_GRGRGR;
pixel_size_mm = 0.003;
data_word = true;
frame_width = 1928;
frame_height = 1208;
frame_stride = (frame_width * 12 / 8) + 4;
extra_height = AR0231_REGISTERS_HEIGHT + AR0231_STATS_HEIGHT;
registers_offset = 0;
frame_offset = AR0231_REGISTERS_HEIGHT;
stats_offset = AR0231_REGISTERS_HEIGHT + frame_height;
start_reg_array.assign(std::begin(start_reg_array_ar0231), std::end(start_reg_array_ar0231));
init_reg_array.assign(std::begin(init_array_ar0231), std::end(init_array_ar0231));
probe_reg_addr = 0x3000;
probe_expected_data = 0x354;
bits_per_pixel = 12;
mipi_format = CAM_FORMAT_MIPI_RAW_12;
frame_data_type = 0x12; // Changing stats to 0x2C doesn't work, so change pixels to 0x12 instead
mclk_frequency = 19200000; //Hz
readout_time_ns = 22850000;
dc_gain_factor = 2.5;
dc_gain_min_weight = 0;
dc_gain_max_weight = 1;
dc_gain_on_grey = 0.2;
dc_gain_off_grey = 0.3;
exposure_time_min = 2; // with HDR, fastest ss
exposure_time_max = 0x0855; // with HDR, slowest ss, 40ms
analog_gain_min_idx = 0x1; // 0.25x
analog_gain_rec_idx = 0x6; // 0.8x
analog_gain_max_idx = 0xD; // 4.0x
analog_gain_cost_delta = 0;
analog_gain_cost_low = 0.1;
analog_gain_cost_high = 5.0;
for (int i = 0; i <= analog_gain_max_idx; i++) {
sensor_analog_gains[i] = sensor_analog_gains_AR0231[i];
}
min_ev = exposure_time_min * sensor_analog_gains[analog_gain_min_idx];
max_ev = exposure_time_max * dc_gain_factor * sensor_analog_gains[analog_gain_max_idx];
target_grey_factor = 1.0;
black_level = 168;
color_correct_matrix = {
0x000000af, 0x00000ff9, 0x00000fd8,
0x00000fbc, 0x000000bb, 0x00000009,
0x00000fb6, 0x00000fe0, 0x000000ea,
};
for (int i = 0; i < 65; i++) {
float fx = i / 64.0;
const float gamma_k = 0.75;
const float gamma_b = 0.125;
const float mp = 0.01; // ideally midpoint should be adaptive
const float rk = 9 - 100*mp;
// poly approximation for s curve
fx = (fx > mp) ?
((rk * (fx-mp) * (1-(gamma_k*mp+gamma_b)) * (1+1/(rk*(1-mp))) / (1+rk*(fx-mp))) + gamma_k*mp + gamma_b) :
((rk * (fx-mp) * (gamma_k*mp+gamma_b) * (1+1/(rk*mp)) / (1-rk*(fx-mp))) + gamma_k*mp + gamma_b);
gamma_lut_rgb.push_back((uint32_t)(fx*1023.0 + 0.5));
}
prepare_gamma_lut();
linearization_lut = {
0x02000000, 0x02000000, 0x02000000, 0x02000000,
0x020007ff, 0x020007ff, 0x020007ff, 0x020007ff,
0x02000bff, 0x02000bff, 0x02000bff, 0x02000bff,
0x020017ff, 0x020017ff, 0x020017ff, 0x020017ff,
0x02001bff, 0x02001bff, 0x02001bff, 0x02001bff,
0x020023ff, 0x020023ff, 0x020023ff, 0x020023ff,
0x00003fff, 0x00003fff, 0x00003fff, 0x00003fff,
0x00003fff, 0x00003fff, 0x00003fff, 0x00003fff,
0x00003fff, 0x00003fff, 0x00003fff, 0x00003fff,
};
for (int i = 0; i < 252; i++) {
linearization_lut.push_back(0x0);
}
linearization_pts = {0x07ff0bff, 0x17ff1bff, 0x23ff3fff, 0x3fff3fff};
for (int i = 0; i < 884*2; i++) {
vignetting_lut.push_back(0xff);
}
}
void AR0231::processRegisters(uint8_t *cur_buf, cereal::FrameData::Builder &framed) const {
const uint8_t expected_preamble[] = {0x0a, 0xaa, 0x55, 0x20, 0xa5, 0x55};
uint8_t *data = cur_buf + registers_offset;
if (memcmp(data, expected_preamble, std::size(expected_preamble)) != 0) {
LOGE("unexpected register data found");
return;
}
if (ar0231_register_lut.empty()) {
ar0231_register_lut = ar0231_build_register_lut(this, data);
}
std::map<uint16_t, uint16_t> registers;
for (uint16_t addr : {0x2000, 0x2002, 0x20b0, 0x20b2, 0x30c6, 0x30c8, 0x30ca, 0x30cc}) {
auto offset = ar0231_register_lut[addr];
registers[addr] = ((uint16_t)data[offset.first] << 8) | data[offset.second];
}
uint32_t frame_id = ((uint32_t)registers[0x2000] << 16) | registers[0x2002];
framed.setFrameIdSensor(frame_id);
float temp_0 = ar0231_parse_temp_sensor(registers[0x30c6], registers[0x30c8], registers[0x20b0]);
float temp_1 = ar0231_parse_temp_sensor(registers[0x30ca], registers[0x30cc], registers[0x20b2]);
framed.setTemperaturesC({temp_0, temp_1});
}
std::vector<i2c_random_wr_payload> AR0231::getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const {
uint16_t analog_gain_reg = 0xFF00 | (new_exp_g << 4) | new_exp_g;
return {
{0x3366, analog_gain_reg},
{0x3362, (uint16_t)(dc_gain_enabled ? 0x1 : 0x0)},
{0x3012, (uint16_t)exposure_time},
};
}
int AR0231::getSlaveAddress(int port) const {
assert(port >= 0 && port <= 2);
return (int[]){0x20, 0x30, 0x20}[port];
}
float AR0231::getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const {
// Cost of ev diff
float score = std::abs(desired_ev - (exp_t * exp_gain)) * 10;
// Cost of absolute gain
float m = exp_g_idx > analog_gain_rec_idx ? analog_gain_cost_high : analog_gain_cost_low;
score += std::abs(exp_g_idx - (int)analog_gain_rec_idx) * m;
// Cost of changing gain
score += std::abs(exp_g_idx - gain_idx) * (score + 1.0) / 10.0;
return score;
}