mirror of https://github.com/commaai/openpilot.git
parent
2c7427c203
commit
feb03f3625
|
@ -1,55 +1,8 @@
|
|||
import os
|
||||
import sys
|
||||
import fcntl
|
||||
import hashlib
|
||||
import platform
|
||||
from cffi import FFI
|
||||
|
||||
|
||||
def suffix():
|
||||
if platform.system() == "Darwin":
|
||||
return ".dylib"
|
||||
else:
|
||||
return ".so"
|
||||
|
||||
def ffi_wrap(name, c_code, c_header, tmpdir="/tmp/ccache", cflags="", libraries=None):
|
||||
if libraries is None:
|
||||
libraries = []
|
||||
|
||||
cache = name + "_" + hashlib.sha1(c_code.encode('utf-8')).hexdigest()
|
||||
try:
|
||||
os.mkdir(tmpdir)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
fd = os.open(tmpdir, 0)
|
||||
fcntl.flock(fd, fcntl.LOCK_EX)
|
||||
try:
|
||||
sys.path.append(tmpdir)
|
||||
try:
|
||||
mod = __import__(cache)
|
||||
except Exception:
|
||||
print(f"cache miss {cache}")
|
||||
compile_code(cache, c_code, c_header, tmpdir, cflags, libraries)
|
||||
mod = __import__(cache)
|
||||
finally:
|
||||
os.close(fd)
|
||||
|
||||
return mod.ffi, mod.lib
|
||||
|
||||
|
||||
def compile_code(name, c_code, c_header, directory, cflags="", libraries=None):
|
||||
if libraries is None:
|
||||
libraries = []
|
||||
|
||||
ffibuilder = FFI()
|
||||
ffibuilder.set_source(name, c_code, source_extension='.cpp', libraries=libraries)
|
||||
ffibuilder.cdef(c_header)
|
||||
os.environ['OPT'] = "-fwrapv -O2 -DNDEBUG -std=c++1z"
|
||||
os.environ['CFLAGS'] = cflags
|
||||
ffibuilder.compile(verbose=True, debug=False, tmpdir=directory)
|
||||
|
||||
|
||||
def wrap_compiled(name, directory):
|
||||
sys.path.append(directory)
|
||||
mod = __import__(name)
|
||||
return mod.ffi, mod.lib
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
class lazy_property():
|
||||
"""Defines a property whose value will be computed only once and as needed.
|
||||
|
||||
This can only be used on instance methods.
|
||||
"""
|
||||
def __init__(self, func):
|
||||
self._func = func
|
||||
|
||||
def __get__(self, obj_self, cls):
|
||||
value = self._func(obj_self)
|
||||
setattr(obj_self, self._func.__name__, value)
|
||||
return value
|
|
@ -1,22 +0,0 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def deep_interp_np(x, xp, fp, axis=None):
|
||||
if axis is not None:
|
||||
fp = fp.swapaxes(0,axis)
|
||||
x = np.atleast_1d(x)
|
||||
xp = np.array(xp)
|
||||
if len(xp) < 2:
|
||||
return np.repeat(fp, len(x), axis=0)
|
||||
if min(np.diff(xp)) < 0:
|
||||
raise RuntimeError('Bad x array for interpolation')
|
||||
j = np.searchsorted(xp, x) - 1
|
||||
j = np.clip(j, 0, len(xp)-2)
|
||||
d = np.divide(x - xp[j], xp[j + 1] - xp[j], out=np.ones_like(x, dtype=np.float64), where=xp[j + 1] - xp[j] != 0)
|
||||
vals_interp = (fp[j].T*(1 - d)).T + (fp[j + 1].T*d).T
|
||||
if axis is not None:
|
||||
vals_interp = vals_interp.swapaxes(0,axis)
|
||||
if len(vals_interp) == 1:
|
||||
return vals_interp[0]
|
||||
else:
|
||||
return vals_interp
|
Loading…
Reference in New Issue