mirror of https://github.com/1okko/openpilot.git
103 lines
3.5 KiB
Python
Executable File
103 lines
3.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import numpy as np
|
|
|
|
from cereal import messaging
|
|
from openpilot.common.filter_simple import FirstOrderFilter
|
|
from openpilot.common.realtime import Ratekeeper
|
|
from openpilot.system.swaglog import cloudlog
|
|
|
|
RATE = 10
|
|
FFT_SAMPLES = 4096
|
|
REFERENCE_SPL = 2e-5 # newtons/m^2
|
|
SAMPLE_RATE = 44100
|
|
FILTER_DT = 1. / (SAMPLE_RATE / FFT_SAMPLES)
|
|
|
|
|
|
def calculate_spl(measurements):
|
|
# https://www.engineeringtoolbox.com/sound-pressure-d_711.html
|
|
sound_pressure = np.sqrt(np.mean(measurements ** 2)) # RMS of amplitudes
|
|
if sound_pressure > 0:
|
|
sound_pressure_level = 20 * np.log10(sound_pressure / REFERENCE_SPL) # dB
|
|
else:
|
|
sound_pressure_level = 0
|
|
return sound_pressure, sound_pressure_level
|
|
|
|
|
|
def apply_a_weighting(measurements: np.ndarray) -> np.ndarray:
|
|
# Generate a Hanning window of the same length as the audio measurements
|
|
measurements_windowed = measurements * np.hanning(len(measurements))
|
|
|
|
# Calculate the frequency axis for the signal
|
|
freqs = np.fft.fftfreq(measurements_windowed.size, d=1 / SAMPLE_RATE)
|
|
|
|
# Calculate the A-weighting filter
|
|
# https://en.wikipedia.org/wiki/A-weighting
|
|
A = 12194 ** 2 * freqs ** 4 / ((freqs ** 2 + 20.6 ** 2) * (freqs ** 2 + 12194 ** 2) * np.sqrt((freqs ** 2 + 107.7 ** 2) * (freqs ** 2 + 737.9 ** 2)))
|
|
A /= np.max(A) # Normalize the filter
|
|
|
|
# Apply the A-weighting filter to the signal
|
|
return np.abs(np.fft.ifft(np.fft.fft(measurements_windowed) * A))
|
|
|
|
|
|
class Mic:
|
|
def __init__(self):
|
|
self.rk = Ratekeeper(RATE)
|
|
self.pm = messaging.PubMaster(['microphone'])
|
|
|
|
self.measurements = np.empty(0)
|
|
|
|
self.sound_pressure = 0
|
|
self.sound_pressure_weighted = 0
|
|
self.sound_pressure_level_weighted = 0
|
|
|
|
self.spl_filter_weighted = FirstOrderFilter(0, 2.5, FILTER_DT, initialized=False)
|
|
|
|
def update(self):
|
|
msg = messaging.new_message('microphone')
|
|
msg.microphone.soundPressure = float(self.sound_pressure)
|
|
msg.microphone.soundPressureWeighted = float(self.sound_pressure_weighted)
|
|
|
|
msg.microphone.soundPressureWeightedDb = float(self.sound_pressure_level_weighted)
|
|
msg.microphone.filteredSoundPressureWeightedDb = float(self.spl_filter_weighted.x)
|
|
|
|
self.pm.send('microphone', msg)
|
|
self.rk.keep_time()
|
|
|
|
def callback(self, indata, frames, time, status):
|
|
"""
|
|
Using amplitude measurements, calculate an uncalibrated sound pressure and sound pressure level.
|
|
Then apply A-weighting to the raw amplitudes and run the same calculations again.
|
|
|
|
Logged A-weighted equivalents are rough approximations of the human-perceived loudness.
|
|
"""
|
|
|
|
self.measurements = np.concatenate((self.measurements, indata[:, 0]))
|
|
|
|
while self.measurements.size >= FFT_SAMPLES:
|
|
measurements = self.measurements[:FFT_SAMPLES]
|
|
|
|
self.sound_pressure, _ = calculate_spl(measurements)
|
|
measurements_weighted = apply_a_weighting(measurements)
|
|
self.sound_pressure_weighted, self.sound_pressure_level_weighted = calculate_spl(measurements_weighted)
|
|
self.spl_filter_weighted.update(self.sound_pressure_level_weighted)
|
|
|
|
self.measurements = self.measurements[FFT_SAMPLES:]
|
|
|
|
def micd_thread(self):
|
|
# sounddevice must be imported after forking processes
|
|
import sounddevice as sd
|
|
|
|
with sd.InputStream(channels=1, samplerate=SAMPLE_RATE, callback=self.callback) as stream:
|
|
cloudlog.info(f"micd stream started: {stream.samplerate=} {stream.channels=} {stream.dtype=} {stream.device=}")
|
|
while True:
|
|
self.update()
|
|
|
|
|
|
def main():
|
|
mic = Mic()
|
|
mic.micd_thread()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|