mirror of https://github.com/1okko/openpilot.git
294 lines
12 KiB
Python
Executable File
294 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import os
|
|
import time
|
|
import pickle
|
|
import numpy as np
|
|
import cereal.messaging as messaging
|
|
from pathlib import Path
|
|
from typing import Dict, Optional
|
|
from setproctitle import setproctitle
|
|
from cereal.messaging import PubMaster, SubMaster
|
|
from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
|
|
from openpilot.common.swaglog import cloudlog
|
|
from openpilot.common.params import Params
|
|
from openpilot.common.realtime import DT_MDL
|
|
from openpilot.common.numpy_fast import interp
|
|
from openpilot.common.filter_simple import FirstOrderFilter
|
|
from openpilot.common.realtime import config_realtime_process
|
|
from openpilot.common.transformations.model import get_warp_matrix
|
|
from openpilot.selfdrive import sentry
|
|
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
|
|
from openpilot.selfdrive.modeld.parse_model_outputs import Parser
|
|
from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
|
|
from openpilot.selfdrive.modeld.constants import ModelConstants
|
|
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
|
|
|
|
PROCESS_NAME = "selfdrive.modeld.modeld"
|
|
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
|
|
|
MODEL_PATHS = {
|
|
ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
|
|
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
|
|
|
|
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
|
|
|
|
class FrameMeta:
|
|
frame_id: int = 0
|
|
timestamp_sof: int = 0
|
|
timestamp_eof: int = 0
|
|
|
|
def __init__(self, vipc=None):
|
|
if vipc is not None:
|
|
self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof
|
|
|
|
class ModelState:
|
|
frame: ModelFrame
|
|
wide_frame: ModelFrame
|
|
inputs: Dict[str, np.ndarray]
|
|
output: np.ndarray
|
|
prev_desire: np.ndarray # for tracking the rising edge of the pulse
|
|
model: ModelRunner
|
|
|
|
def __init__(self, context: CLContext):
|
|
self.frame = ModelFrame(context)
|
|
self.wide_frame = ModelFrame(context)
|
|
self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
|
|
self.inputs = {
|
|
'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
|
|
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
|
|
'lat_planner_state': np.zeros(ModelConstants.LAT_PLANNER_STATE_LEN, dtype=np.float32),
|
|
'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
|
|
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
|
|
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
|
|
}
|
|
|
|
with open(METADATA_PATH, 'rb') as f:
|
|
model_metadata = pickle.load(f)
|
|
|
|
self.output_slices = model_metadata['output_slices']
|
|
net_output_size = model_metadata['output_shapes']['outputs'][1]
|
|
self.output = np.zeros(net_output_size, dtype=np.float32)
|
|
self.parser = Parser()
|
|
|
|
self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context)
|
|
self.model.addInput("input_imgs", None)
|
|
self.model.addInput("big_input_imgs", None)
|
|
for k,v in self.inputs.items():
|
|
self.model.addInput(k, v)
|
|
|
|
def slice_outputs(self, model_outputs: np.ndarray) -> Dict[str, np.ndarray]:
|
|
parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()}
|
|
if SEND_RAW_PRED:
|
|
parsed_model_outputs['raw_pred'] = model_outputs.copy()
|
|
return parsed_model_outputs
|
|
|
|
def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray,
|
|
inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[Dict[str, np.ndarray]]:
|
|
# Model decides when action is completed, so desire input is just a pulse triggered on rising edge
|
|
inputs['desire'][0] = 0
|
|
self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:]
|
|
self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
|
|
self.prev_desire[:] = inputs['desire']
|
|
|
|
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
|
|
self.inputs['nav_features'][:] = inputs['nav_features']
|
|
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
|
|
# self.inputs['driving_style'][:] = inputs['driving_style']
|
|
|
|
# if getCLBuffer is not None, frame will be None
|
|
self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
|
|
if wbuf is not None:
|
|
self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs")))
|
|
|
|
if prepare_only:
|
|
return None
|
|
|
|
self.model.execute()
|
|
outputs = self.parser.parse_outputs(self.slice_outputs(self.output))
|
|
|
|
self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:]
|
|
self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :]
|
|
self.inputs['lat_planner_state'][2] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 2])
|
|
self.inputs['lat_planner_state'][3] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 3])
|
|
return outputs
|
|
|
|
|
|
def main():
|
|
sentry.set_tag("daemon", PROCESS_NAME)
|
|
cloudlog.bind(daemon=PROCESS_NAME)
|
|
setproctitle(PROCESS_NAME)
|
|
config_realtime_process(7, 54)
|
|
|
|
cl_context = CLContext()
|
|
model = ModelState(cl_context)
|
|
cloudlog.warning("models loaded, modeld starting")
|
|
|
|
# visionipc clients
|
|
while True:
|
|
available_streams = VisionIpcClient.available_streams("camerad", block=False)
|
|
if available_streams:
|
|
use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams
|
|
main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams
|
|
break
|
|
time.sleep(.1)
|
|
|
|
vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD
|
|
vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context)
|
|
vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context)
|
|
cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}")
|
|
|
|
while not vipc_client_main.connect(False):
|
|
time.sleep(0.1)
|
|
while use_extra_client and not vipc_client_extra.connect(False):
|
|
time.sleep(0.1)
|
|
|
|
cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})")
|
|
if use_extra_client:
|
|
cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})")
|
|
|
|
# messaging
|
|
pm = PubMaster(["modelV2", "cameraOdometry"])
|
|
sm = SubMaster(["lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"])
|
|
|
|
publish_state = PublishState()
|
|
params = Params()
|
|
|
|
# setup filter to track dropped frames
|
|
frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ)
|
|
frame_id = 0
|
|
last_vipc_frame_id = 0
|
|
run_count = 0
|
|
|
|
model_transform_main = np.zeros((3, 3), dtype=np.float32)
|
|
model_transform_extra = np.zeros((3, 3), dtype=np.float32)
|
|
live_calib_seen = False
|
|
driving_style = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=np.float32)
|
|
nav_features = np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32)
|
|
nav_instructions = np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)
|
|
buf_main, buf_extra = None, None
|
|
meta_main = FrameMeta()
|
|
meta_extra = FrameMeta()
|
|
|
|
while True:
|
|
# Keep receiving frames until we are at least 1 frame ahead of previous extra frame
|
|
while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
|
|
buf_main = vipc_client_main.recv()
|
|
meta_main = FrameMeta(vipc_client_main)
|
|
if buf_main is None:
|
|
break
|
|
|
|
if buf_main is None:
|
|
cloudlog.error("vipc_client_main no frame")
|
|
continue
|
|
|
|
if use_extra_client:
|
|
# Keep receiving extra frames until frame id matches main camera
|
|
while True:
|
|
buf_extra = vipc_client_extra.recv()
|
|
meta_extra = FrameMeta(vipc_client_extra)
|
|
if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
|
|
break
|
|
|
|
if buf_extra is None:
|
|
cloudlog.error("vipc_client_extra no frame")
|
|
continue
|
|
|
|
if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000:
|
|
cloudlog.error("frames out of sync! main: {} ({:.5f}), extra: {} ({:.5f})".format(
|
|
meta_main.frame_id, meta_main.timestamp_sof / 1e9,
|
|
meta_extra.frame_id, meta_extra.timestamp_sof / 1e9))
|
|
|
|
else:
|
|
# Use single camera
|
|
buf_extra = buf_main
|
|
meta_extra = meta_main
|
|
|
|
# TODO: path planner timeout?
|
|
sm.update(0)
|
|
desire = sm["lateralPlan"].desire.raw
|
|
is_rhd = sm["driverMonitoringState"].isRHD
|
|
frame_id = sm["roadCameraState"].frameId
|
|
if sm.updated["liveCalibration"]:
|
|
device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
|
|
model_transform_main = get_warp_matrix(device_from_calib_euler, main_wide_camera, False).astype(np.float32)
|
|
model_transform_extra = get_warp_matrix(device_from_calib_euler, True, True).astype(np.float32)
|
|
live_calib_seen = True
|
|
|
|
traffic_convention = np.zeros(2)
|
|
traffic_convention[int(is_rhd)] = 1
|
|
|
|
vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
|
|
if desire >= 0 and desire < ModelConstants.DESIRE_LEN:
|
|
vec_desire[desire] = 1
|
|
|
|
# Enable/disable nav features
|
|
timestamp_llk = sm["navModel"].locationMonoTime
|
|
nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9)
|
|
nav_enabled = nav_valid and params.get_bool("ExperimentalMode")
|
|
|
|
if not nav_enabled:
|
|
nav_features[:] = 0
|
|
nav_instructions[:] = 0
|
|
|
|
if nav_enabled and sm.updated["navModel"]:
|
|
nav_features = np.array(sm["navModel"].features)
|
|
|
|
if nav_enabled and sm.updated["navInstruction"]:
|
|
nav_instructions[:] = 0
|
|
for maneuver in sm["navInstruction"].allManeuvers:
|
|
distance_idx = 25 + int(maneuver.distance / 20)
|
|
direction_idx = 0
|
|
if maneuver.modifier in ("left", "slight left", "sharp left"):
|
|
direction_idx = 1
|
|
if maneuver.modifier in ("right", "slight right", "sharp right"):
|
|
direction_idx = 2
|
|
if 0 <= distance_idx < 50:
|
|
nav_instructions[distance_idx*3 + direction_idx] = 1
|
|
|
|
# tracked dropped frames
|
|
vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
|
|
frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
|
|
if run_count < 10: # let frame drops warm up
|
|
frame_dropped_filter.x = 0.
|
|
frames_dropped = 0.
|
|
run_count = run_count + 1
|
|
|
|
frame_drop_ratio = frames_dropped / (1 + frames_dropped)
|
|
prepare_only = vipc_dropped_frames > 0
|
|
if prepare_only:
|
|
cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames")
|
|
|
|
inputs:Dict[str, np.ndarray] = {
|
|
'desire': vec_desire,
|
|
'traffic_convention': traffic_convention,
|
|
'driving_style': driving_style,
|
|
'nav_features': nav_features,
|
|
'nav_instructions': nav_instructions}
|
|
|
|
mt1 = time.perf_counter()
|
|
model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only)
|
|
mt2 = time.perf_counter()
|
|
model_execution_time = mt2 - mt1
|
|
|
|
if model_output is not None:
|
|
modelv2_send = messaging.new_message('modelV2')
|
|
posenet_send = messaging.new_message('cameraOdometry')
|
|
fill_model_msg(modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio,
|
|
meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen)
|
|
|
|
fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)
|
|
pm.send('modelV2', modelv2_send)
|
|
pm.send('cameraOdometry', posenet_send)
|
|
|
|
last_vipc_frame_id = meta_main.frame_id
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
main()
|
|
except KeyboardInterrupt:
|
|
cloudlog.warning(f"child {PROCESS_NAME} got SIGINT")
|
|
except Exception:
|
|
sentry.capture_exception()
|
|
raise
|