#!/usr/bin/env python3 import os import time import pickle import numpy as np import cereal.messaging as messaging from pathlib import Path from typing import Dict, Optional from setproctitle import setproctitle from cereal.messaging import PubMaster, SubMaster from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf from openpilot.common.swaglog import cloudlog from openpilot.common.params import Params from openpilot.common.realtime import DT_MDL from openpilot.common.numpy_fast import interp from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.realtime import config_realtime_process from openpilot.common.transformations.model import get_warp_matrix from openpilot.selfdrive import sentry from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime from openpilot.selfdrive.modeld.parse_model_outputs import Parser from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState from openpilot.selfdrive.modeld.constants import ModelConstants from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext PROCESS_NAME = "selfdrive.modeld.modeld" SEND_RAW_PRED = os.getenv('SEND_RAW_PRED') MODEL_PATHS = { ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed', ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'} METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl' class FrameMeta: frame_id: int = 0 timestamp_sof: int = 0 timestamp_eof: int = 0 def __init__(self, vipc=None): if vipc is not None: self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof class ModelState: frame: ModelFrame wide_frame: ModelFrame inputs: Dict[str, np.ndarray] output: np.ndarray prev_desire: np.ndarray # for tracking the rising edge of the pulse model: ModelRunner def __init__(self, context: CLContext): self.frame = ModelFrame(context) self.wide_frame = ModelFrame(context) self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32) self.inputs = { 'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32), 'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32), 'lat_planner_state': np.zeros(ModelConstants.LAT_PLANNER_STATE_LEN, dtype=np.float32), 'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32), 'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32), 'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32), } with open(METADATA_PATH, 'rb') as f: model_metadata = pickle.load(f) self.output_slices = model_metadata['output_slices'] net_output_size = model_metadata['output_shapes']['outputs'][1] self.output = np.zeros(net_output_size, dtype=np.float32) self.parser = Parser() self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context) self.model.addInput("input_imgs", None) self.model.addInput("big_input_imgs", None) for k,v in self.inputs.items(): self.model.addInput(k, v) def slice_outputs(self, model_outputs: np.ndarray) -> Dict[str, np.ndarray]: parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()} if SEND_RAW_PRED: parsed_model_outputs['raw_pred'] = model_outputs.copy() return parsed_model_outputs def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray, inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[Dict[str, np.ndarray]]: # Model decides when action is completed, so desire input is just a pulse triggered on rising edge inputs['desire'][0] = 0 self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:] self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0) self.prev_desire[:] = inputs['desire'] self.inputs['traffic_convention'][:] = inputs['traffic_convention'] self.inputs['nav_features'][:] = inputs['nav_features'] self.inputs['nav_instructions'][:] = inputs['nav_instructions'] # self.inputs['driving_style'][:] = inputs['driving_style'] # if getCLBuffer is not None, frame will be None self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs"))) if wbuf is not None: self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs"))) if prepare_only: return None self.model.execute() outputs = self.parser.parse_outputs(self.slice_outputs(self.output)) self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:] self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :] self.inputs['lat_planner_state'][2] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 2]) self.inputs['lat_planner_state'][3] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 3]) return outputs def main(): sentry.set_tag("daemon", PROCESS_NAME) cloudlog.bind(daemon=PROCESS_NAME) setproctitle(PROCESS_NAME) config_realtime_process(7, 54) cl_context = CLContext() model = ModelState(cl_context) cloudlog.warning("models loaded, modeld starting") # visionipc clients while True: available_streams = VisionIpcClient.available_streams("camerad", block=False) if available_streams: use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams break time.sleep(.1) vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context) vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context) cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}") while not vipc_client_main.connect(False): time.sleep(0.1) while use_extra_client and not vipc_client_extra.connect(False): time.sleep(0.1) cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})") if use_extra_client: cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})") # messaging pm = PubMaster(["modelV2", "cameraOdometry"]) sm = SubMaster(["lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"]) publish_state = PublishState() params = Params() # setup filter to track dropped frames frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ) frame_id = 0 last_vipc_frame_id = 0 run_count = 0 model_transform_main = np.zeros((3, 3), dtype=np.float32) model_transform_extra = np.zeros((3, 3), dtype=np.float32) live_calib_seen = False driving_style = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=np.float32) nav_features = np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32) nav_instructions = np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32) buf_main, buf_extra = None, None meta_main = FrameMeta() meta_extra = FrameMeta() while True: # Keep receiving frames until we are at least 1 frame ahead of previous extra frame while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: buf_main = vipc_client_main.recv() meta_main = FrameMeta(vipc_client_main) if buf_main is None: break if buf_main is None: cloudlog.error("vipc_client_main no frame") continue if use_extra_client: # Keep receiving extra frames until frame id matches main camera while True: buf_extra = vipc_client_extra.recv() meta_extra = FrameMeta(vipc_client_extra) if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: break if buf_extra is None: cloudlog.error("vipc_client_extra no frame") continue if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000: cloudlog.error("frames out of sync! main: {} ({:.5f}), extra: {} ({:.5f})".format( meta_main.frame_id, meta_main.timestamp_sof / 1e9, meta_extra.frame_id, meta_extra.timestamp_sof / 1e9)) else: # Use single camera buf_extra = buf_main meta_extra = meta_main # TODO: path planner timeout? sm.update(0) desire = sm["lateralPlan"].desire.raw is_rhd = sm["driverMonitoringState"].isRHD frame_id = sm["roadCameraState"].frameId if sm.updated["liveCalibration"]: device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32) model_transform_main = get_warp_matrix(device_from_calib_euler, main_wide_camera, False).astype(np.float32) model_transform_extra = get_warp_matrix(device_from_calib_euler, True, True).astype(np.float32) live_calib_seen = True traffic_convention = np.zeros(2) traffic_convention[int(is_rhd)] = 1 vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32) if desire >= 0 and desire < ModelConstants.DESIRE_LEN: vec_desire[desire] = 1 # Enable/disable nav features timestamp_llk = sm["navModel"].locationMonoTime nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9) nav_enabled = nav_valid and params.get_bool("ExperimentalMode") if not nav_enabled: nav_features[:] = 0 nav_instructions[:] = 0 if nav_enabled and sm.updated["navModel"]: nav_features = np.array(sm["navModel"].features) if nav_enabled and sm.updated["navInstruction"]: nav_instructions[:] = 0 for maneuver in sm["navInstruction"].allManeuvers: distance_idx = 25 + int(maneuver.distance / 20) direction_idx = 0 if maneuver.modifier in ("left", "slight left", "sharp left"): direction_idx = 1 if maneuver.modifier in ("right", "slight right", "sharp right"): direction_idx = 2 if 0 <= distance_idx < 50: nav_instructions[distance_idx*3 + direction_idx] = 1 # tracked dropped frames vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1) frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10)) if run_count < 10: # let frame drops warm up frame_dropped_filter.x = 0. frames_dropped = 0. run_count = run_count + 1 frame_drop_ratio = frames_dropped / (1 + frames_dropped) prepare_only = vipc_dropped_frames > 0 if prepare_only: cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames") inputs:Dict[str, np.ndarray] = { 'desire': vec_desire, 'traffic_convention': traffic_convention, 'driving_style': driving_style, 'nav_features': nav_features, 'nav_instructions': nav_instructions} mt1 = time.perf_counter() model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only) mt2 = time.perf_counter() model_execution_time = mt2 - mt1 if model_output is not None: modelv2_send = messaging.new_message('modelV2') posenet_send = messaging.new_message('cameraOdometry') fill_model_msg(modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio, meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen) fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen) pm.send('modelV2', modelv2_send) pm.send('cameraOdometry', posenet_send) last_vipc_frame_id = meta_main.frame_id if __name__ == "__main__": try: main() except KeyboardInterrupt: cloudlog.warning(f"child {PROCESS_NAME} got SIGINT") except Exception: sentry.capture_exception() raise