import numpy as np import openpilot.common.transformations.orientation as orient ## -- hardcoded hardware params -- eon_f_focal_length = 910.0 eon_d_focal_length = 650.0 tici_f_focal_length = 2648.0 tici_e_focal_length = tici_d_focal_length = 567.0 # probably wrong? magnification is not consistent across frame eon_f_frame_size = (1164, 874) eon_d_frame_size = (816, 612) tici_f_frame_size = tici_e_frame_size = tici_d_frame_size = (1928, 1208) # aka 'K' aka camera_frame_from_view_frame eon_fcam_intrinsics = np.array([ [eon_f_focal_length, 0.0, float(eon_f_frame_size[0])/2], [0.0, eon_f_focal_length, float(eon_f_frame_size[1])/2], [0.0, 0.0, 1.0]]) eon_intrinsics = eon_fcam_intrinsics # xx eon_dcam_intrinsics = np.array([ [eon_d_focal_length, 0.0, float(eon_d_frame_size[0])/2], [0.0, eon_d_focal_length, float(eon_d_frame_size[1])/2], [0.0, 0.0, 1.0]]) tici_fcam_intrinsics = np.array([ [tici_f_focal_length, 0.0, float(tici_f_frame_size[0])/2], [0.0, tici_f_focal_length, float(tici_f_frame_size[1])/2], [0.0, 0.0, 1.0]]) tici_dcam_intrinsics = np.array([ [tici_d_focal_length, 0.0, float(tici_d_frame_size[0])/2], [0.0, tici_d_focal_length, float(tici_d_frame_size[1])/2], [0.0, 0.0, 1.0]]) tici_ecam_intrinsics = tici_dcam_intrinsics # aka 'K_inv' aka view_frame_from_camera_frame eon_fcam_intrinsics_inv = np.linalg.inv(eon_fcam_intrinsics) eon_intrinsics_inv = eon_fcam_intrinsics_inv # xx tici_fcam_intrinsics_inv = np.linalg.inv(tici_fcam_intrinsics) tici_ecam_intrinsics_inv = np.linalg.inv(tici_ecam_intrinsics) FULL_FRAME_SIZE = tici_f_frame_size FOCAL = tici_f_focal_length fcam_intrinsics = tici_fcam_intrinsics W, H = FULL_FRAME_SIZE[0], FULL_FRAME_SIZE[1] # device/mesh : x->forward, y-> right, z->down # view : x->right, y->down, z->forward device_frame_from_view_frame = np.array([ [ 0., 0., 1.], [ 1., 0., 0.], [ 0., 1., 0.] ]) view_frame_from_device_frame = device_frame_from_view_frame.T # aka 'extrinsic_matrix' # road : x->forward, y -> left, z->up def get_view_frame_from_road_frame(roll, pitch, yaw, height): device_from_road = orient.rot_from_euler([roll, pitch, yaw]).dot(np.diag([1, -1, -1])) view_from_road = view_frame_from_device_frame.dot(device_from_road) return np.hstack((view_from_road, [[0], [height], [0]])) # aka 'extrinsic_matrix' def get_view_frame_from_calib_frame(roll, pitch, yaw, height): device_from_calib= orient.rot_from_euler([roll, pitch, yaw]) view_from_calib = view_frame_from_device_frame.dot(device_from_calib) return np.hstack((view_from_calib, [[0], [height], [0]])) def vp_from_ke(m): """ Computes the vanishing point from the product of the intrinsic and extrinsic matrices C = KE. The vanishing point is defined as lim x->infinity C (x, 0, 0, 1).T """ return (m[0, 0]/m[2, 0], m[1, 0]/m[2, 0]) def roll_from_ke(m): # note: different from calibration.h/RollAnglefromKE: i think that one's just wrong return np.arctan2(-(m[1, 0] - m[1, 1] * m[2, 0] / m[2, 1]), -(m[0, 0] - m[0, 1] * m[2, 0] / m[2, 1])) def normalize(img_pts, intrinsics=fcam_intrinsics): # normalizes image coordinates # accepts single pt or array of pts intrinsics_inv = np.linalg.inv(intrinsics) img_pts = np.array(img_pts) input_shape = img_pts.shape img_pts = np.atleast_2d(img_pts) img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1)))) img_pts_normalized = img_pts.dot(intrinsics_inv.T) img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan return img_pts_normalized[:, :2].reshape(input_shape) def denormalize(img_pts, intrinsics=fcam_intrinsics, width=np.inf, height=np.inf): # denormalizes image coordinates # accepts single pt or array of pts img_pts = np.array(img_pts) input_shape = img_pts.shape img_pts = np.atleast_2d(img_pts) img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1), dtype=img_pts.dtype))) img_pts_denormalized = img_pts.dot(intrinsics.T) if np.isfinite(width): img_pts_denormalized[img_pts_denormalized[:, 0] > width] = np.nan img_pts_denormalized[img_pts_denormalized[:, 0] < 0] = np.nan if np.isfinite(height): img_pts_denormalized[img_pts_denormalized[:, 1] > height] = np.nan img_pts_denormalized[img_pts_denormalized[:, 1] < 0] = np.nan return img_pts_denormalized[:, :2].reshape(input_shape) def get_calib_from_vp(vp, intrinsics=fcam_intrinsics): vp_norm = normalize(vp, intrinsics) yaw_calib = np.arctan(vp_norm[0]) pitch_calib = -np.arctan(vp_norm[1]*np.cos(yaw_calib)) roll_calib = 0 return roll_calib, pitch_calib, yaw_calib def device_from_ecef(pos_ecef, orientation_ecef, pt_ecef): # device from ecef frame # device frame is x -> forward, y-> right, z -> down # accepts single pt or array of pts input_shape = pt_ecef.shape pt_ecef = np.atleast_2d(pt_ecef) ecef_from_device_rot = orient.rotations_from_quats(orientation_ecef) device_from_ecef_rot = ecef_from_device_rot.T pt_ecef_rel = pt_ecef - pos_ecef pt_device = np.einsum('jk,ik->ij', device_from_ecef_rot, pt_ecef_rel) return pt_device.reshape(input_shape) def img_from_device(pt_device): # img coordinates from pts in device frame # first transforms to view frame, then to img coords # accepts single pt or array of pts input_shape = pt_device.shape pt_device = np.atleast_2d(pt_device) pt_view = np.einsum('jk,ik->ij', view_frame_from_device_frame, pt_device) # This function should never return negative depths pt_view[pt_view[:, 2] < 0] = np.nan pt_img = pt_view/pt_view[:, 2:3] return pt_img.reshape(input_shape)[:, :2]