mirror of https://github.com/1okko/openpilot.git
Write orientation & transform in C++ (#1637)
* locationd at 20hz * update ref * bump cereal * dont modify global state * add scons files * ecef2geodetic and geodetic2ecef * Finish local coords class * Add header file * Add orientation.cc * cleanup * Add functions to header file * Add cython wrapper * y u no work? * This passes the tests * test rot2quat and quat2rot * Teste euler2rot and rot2euler * rot_matrix * test ecef_euler_from_ned and ned_euler_from_ecef * add benchmark * Add test * Consistent newlines * no more radians supported in geodetic * test localcoord single * test localcoord single * all tests pass * Unused import * Add alternate namings * Add source for formulas * no explicit tests needed * remove benchmark * Add release files * Typo * Remove print statement * no access to raw transform matrix * temporarily add tolerance * handcode quat2euler * update ref
This commit is contained in:
parent
90d97de74d
commit
c18e7da3c2
|
@ -5,7 +5,7 @@ end_of_line = lf
|
|||
insert_final_newline = true
|
||||
trim_trailing_whitespace = true
|
||||
|
||||
[{*.py, *.pyx, *pxd}]
|
||||
[{*.py, *.pyx, *.pxd}]
|
||||
charset = utf-8
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
|
|
|
@ -62,3 +62,4 @@ htmlcov
|
|||
pandaextra
|
||||
|
||||
.mypy_cache/
|
||||
flycheck_*
|
||||
|
|
|
@ -212,6 +212,7 @@ SConscript(['opendbc/can/SConscript'])
|
|||
|
||||
SConscript(['common/SConscript'])
|
||||
SConscript(['common/kalman/SConscript'])
|
||||
SConscript(['common/transformations/SConscript'])
|
||||
SConscript(['phonelibs/SConscript'])
|
||||
|
||||
if arch != "Darwin":
|
||||
|
|
2
cereal
2
cereal
|
@ -1 +1 @@
|
|||
Subproject commit 1aaf1bfd7c07e1c5184e8f13823e8ed02e2c7af2
|
||||
Subproject commit 0021fa241994cd9d94945ba305b0f3f1c43feaae
|
|
@ -0,0 +1,2 @@
|
|||
transformations
|
||||
transformations.cpp
|
|
@ -0,0 +1,9 @@
|
|||
Import('env')
|
||||
|
||||
d = Dir('.')
|
||||
|
||||
env.Command(
|
||||
['transformations.so'],
|
||||
['transformations.pxd', 'transformations.pyx',
|
||||
'coordinates.cc', 'orientation.cc', 'coordinates.hpp', 'orientation.hpp'],
|
||||
'cd ' + d.path + ' && python3 setup.py build_ext --inplace')
|
|
@ -0,0 +1,104 @@
|
|||
#define _USE_MATH_DEFINES
|
||||
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <eigen3/Eigen/Dense>
|
||||
|
||||
#include "coordinates.hpp"
|
||||
|
||||
#define DEG2RAD(x) ((x) * M_PI / 180.0)
|
||||
#define RAD2DEG(x) ((x) * 180.0 / M_PI)
|
||||
|
||||
|
||||
double a = 6378137;
|
||||
double b = 6356752.3142;
|
||||
double esq = 6.69437999014 * 0.001;
|
||||
double e1sq = 6.73949674228 * 0.001;
|
||||
|
||||
|
||||
static Geodetic to_degrees(Geodetic geodetic){
|
||||
geodetic.lat = RAD2DEG(geodetic.lat);
|
||||
geodetic.lon = RAD2DEG(geodetic.lon);
|
||||
return geodetic;
|
||||
}
|
||||
|
||||
static Geodetic to_radians(Geodetic geodetic){
|
||||
geodetic.lat = DEG2RAD(geodetic.lat);
|
||||
geodetic.lon = DEG2RAD(geodetic.lon);
|
||||
return geodetic;
|
||||
}
|
||||
|
||||
|
||||
ECEF geodetic2ecef(Geodetic g){
|
||||
g = to_radians(g);
|
||||
double xi = sqrt(1.0 - esq * pow(sin(g.lat), 2));
|
||||
double x = (a / xi + g.alt) * cos(g.lat) * cos(g.lon);
|
||||
double y = (a / xi + g.alt) * cos(g.lat) * sin(g.lon);
|
||||
double z = (a / xi * (1.0 - esq) + g.alt) * sin(g.lat);
|
||||
return {x, y, z};
|
||||
}
|
||||
|
||||
Geodetic ecef2geodetic(ECEF e){
|
||||
// Convert from ECEF to geodetic using Ferrari's methods
|
||||
// https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#Ferrari.27s_solution
|
||||
double x = e.x;
|
||||
double y = e.y;
|
||||
double z = e.z;
|
||||
|
||||
double r = sqrt(x * x + y * y);
|
||||
double Esq = a * a - b * b;
|
||||
double F = 54 * b * b * z * z;
|
||||
double G = r * r + (1 - esq) * z * z - esq * Esq;
|
||||
double C = (esq * esq * F * r * r) / (pow(G, 3));
|
||||
double S = cbrt(1 + C + sqrt(C * C + 2 * C));
|
||||
double P = F / (3 * pow((S + 1 / S + 1), 2) * G * G);
|
||||
double Q = sqrt(1 + 2 * esq * esq * P);
|
||||
double r_0 = -(P * esq * r) / (1 + Q) + sqrt(0.5 * a * a*(1 + 1.0 / Q) - P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r);
|
||||
double U = sqrt(pow((r - esq * r_0), 2) + z * z);
|
||||
double V = sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z);
|
||||
double Z_0 = b * b * z / (a * V);
|
||||
double h = U * (1 - b * b / (a * V));
|
||||
|
||||
double lat = atan((z + e1sq * Z_0) / r);
|
||||
double lon = atan2(y, x);
|
||||
|
||||
return to_degrees({lat, lon, h});
|
||||
}
|
||||
|
||||
LocalCoord::LocalCoord(Geodetic g, ECEF e){
|
||||
init_ecef << e.x, e.y, e.z;
|
||||
|
||||
g = to_radians(g);
|
||||
|
||||
ned2ecef_matrix <<
|
||||
-sin(g.lat)*cos(g.lon), -sin(g.lon), -cos(g.lat)*cos(g.lon),
|
||||
-sin(g.lat)*sin(g.lon), cos(g.lon), -cos(g.lat)*sin(g.lon),
|
||||
cos(g.lat), 0, -sin(g.lat);
|
||||
ecef2ned_matrix = ned2ecef_matrix.transpose();
|
||||
}
|
||||
|
||||
NED LocalCoord::ecef2ned(ECEF e) {
|
||||
Eigen::Vector3d ecef;
|
||||
ecef << e.x, e.y, e.z;
|
||||
|
||||
Eigen::Vector3d ned = (ecef2ned_matrix * (ecef - init_ecef));
|
||||
return {ned[0], ned[1], ned[2]};
|
||||
}
|
||||
|
||||
ECEF LocalCoord::ned2ecef(NED n) {
|
||||
Eigen::Vector3d ned;
|
||||
ned << n.n, n.e, n.d;
|
||||
|
||||
Eigen::Vector3d ecef = (ned2ecef_matrix * ned) + init_ecef;
|
||||
return {ecef[0], ecef[1], ecef[2]};
|
||||
}
|
||||
|
||||
NED LocalCoord::geodetic2ned(Geodetic g) {
|
||||
ECEF e = ::geodetic2ecef(g);
|
||||
return ecef2ned(e);
|
||||
}
|
||||
|
||||
Geodetic LocalCoord::ned2geodetic(NED n){
|
||||
ECEF e = ned2ecef(n);
|
||||
return ::ecef2geodetic(e);
|
||||
}
|
|
@ -0,0 +1,36 @@
|
|||
#pragma once
|
||||
|
||||
struct ECEF {
|
||||
double x, y, z;
|
||||
Eigen::Vector3d to_vector(){
|
||||
return Eigen::Vector3d(x, y, z);
|
||||
}
|
||||
};
|
||||
|
||||
struct NED {
|
||||
double n, e, d;
|
||||
};
|
||||
|
||||
struct Geodetic {
|
||||
double lat, lon, alt;
|
||||
bool radians=false;
|
||||
};
|
||||
|
||||
ECEF geodetic2ecef(Geodetic g);
|
||||
Geodetic ecef2geodetic(ECEF e);
|
||||
|
||||
class LocalCoord {
|
||||
private:
|
||||
Eigen::Matrix3d ned2ecef_matrix;
|
||||
Eigen::Matrix3d ecef2ned_matrix;
|
||||
Eigen::Vector3d init_ecef;
|
||||
public:
|
||||
LocalCoord(Geodetic g, ECEF e);
|
||||
LocalCoord(Geodetic g) : LocalCoord(g, ::geodetic2ecef(g)) {}
|
||||
LocalCoord(ECEF e) : LocalCoord(::ecef2geodetic(e), e) {}
|
||||
|
||||
NED ecef2ned(ECEF e);
|
||||
ECEF ned2ecef(NED n);
|
||||
NED geodetic2ned(Geodetic g);
|
||||
Geodetic ned2geodetic(NED n);
|
||||
};
|
|
@ -1,113 +1,19 @@
|
|||
"""
|
||||
Coordinate transformation module. All methods accept arrays as input
|
||||
with each row as a position.
|
||||
"""
|
||||
import numpy as np
|
||||
# pylint: skip-file
|
||||
from common.transformations.orientation import numpy_wrap
|
||||
from common.transformations.transformations import (ecef2geodetic_single,
|
||||
geodetic2ecef_single)
|
||||
from common.transformations.transformations import LocalCoord as LocalCoord_single
|
||||
|
||||
|
||||
a = 6378137
|
||||
b = 6356752.3142
|
||||
esq = 6.69437999014 * 0.001
|
||||
e1sq = 6.73949674228 * 0.001
|
||||
class LocalCoord(LocalCoord_single):
|
||||
ecef2ned = numpy_wrap(LocalCoord_single.ecef2ned_single, (3,), (3,))
|
||||
ned2ecef = numpy_wrap(LocalCoord_single.ned2ecef_single, (3,), (3,))
|
||||
geodetic2ned = numpy_wrap(LocalCoord_single.geodetic2ned_single, (3,), (3,))
|
||||
ned2geodetic = numpy_wrap(LocalCoord_single.ned2geodetic_single, (3,), (3,))
|
||||
|
||||
|
||||
def geodetic2ecef(geodetic, radians=False):
|
||||
geodetic = np.array(geodetic)
|
||||
input_shape = geodetic.shape
|
||||
geodetic = np.atleast_2d(geodetic)
|
||||
|
||||
ratio = 1.0 if radians else (np.pi / 180.0)
|
||||
lat = ratio*geodetic[:, 0]
|
||||
lon = ratio*geodetic[:, 1]
|
||||
alt = geodetic[:, 2]
|
||||
|
||||
xi = np.sqrt(1 - esq * np.sin(lat)**2)
|
||||
x = (a / xi + alt) * np.cos(lat) * np.cos(lon)
|
||||
y = (a / xi + alt) * np.cos(lat) * np.sin(lon)
|
||||
z = (a / xi * (1 - esq) + alt) * np.sin(lat)
|
||||
ecef = np.array([x, y, z]).T
|
||||
return ecef.reshape(input_shape)
|
||||
|
||||
|
||||
def ecef2geodetic(ecef, radians=False):
|
||||
"""
|
||||
Convert ECEF coordinates to geodetic using ferrari's method
|
||||
"""
|
||||
# Save shape and export column
|
||||
ecef = np.atleast_1d(ecef)
|
||||
input_shape = ecef.shape
|
||||
ecef = np.atleast_2d(ecef)
|
||||
x, y, z = ecef[:, 0], ecef[:, 1], ecef[:, 2]
|
||||
|
||||
ratio = 1.0 if radians else (180.0 / np.pi)
|
||||
|
||||
# Conver from ECEF to geodetic using Ferrari's methods
|
||||
# https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#Ferrari.27s_solution
|
||||
r = np.sqrt(x * x + y * y)
|
||||
Esq = a * a - b * b
|
||||
F = 54 * b * b * z * z
|
||||
G = r * r + (1 - esq) * z * z - esq * Esq
|
||||
C = (esq * esq * F * r * r) / (pow(G, 3))
|
||||
S = np.cbrt(1 + C + np.sqrt(C * C + 2 * C))
|
||||
P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
|
||||
Q = np.sqrt(1 + 2 * esq * esq * P)
|
||||
r_0 = -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) -
|
||||
P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
|
||||
U = np.sqrt(pow((r - esq * r_0), 2) + z * z)
|
||||
V = np.sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
|
||||
Z_0 = b * b * z / (a * V)
|
||||
h = U * (1 - b * b / (a * V))
|
||||
lat = ratio*np.arctan((z + e1sq * Z_0) / r)
|
||||
lon = ratio*np.arctan2(y, x)
|
||||
|
||||
# stack the new columns and return to the original shape
|
||||
geodetic = np.column_stack((lat, lon, h))
|
||||
return geodetic.reshape(input_shape)
|
||||
|
||||
geodetic2ecef = numpy_wrap(geodetic2ecef_single, (3,), (3,))
|
||||
ecef2geodetic = numpy_wrap(ecef2geodetic_single, (3,), (3,))
|
||||
|
||||
geodetic_from_ecef = ecef2geodetic
|
||||
ecef_from_geodetic = geodetic2ecef
|
||||
|
||||
|
||||
class LocalCoord():
|
||||
"""
|
||||
Allows conversions to local frames. In this case NED.
|
||||
That is: North East Down from the start position in
|
||||
meters.
|
||||
"""
|
||||
def __init__(self, init_geodetic, init_ecef):
|
||||
self.init_ecef = init_ecef
|
||||
lat, lon, _ = (np.pi/180)*np.array(init_geodetic)
|
||||
self.ned2ecef_matrix = np.array([[-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon)],
|
||||
[-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon)],
|
||||
[np.cos(lat), 0, -np.sin(lat)]])
|
||||
self.ecef2ned_matrix = self.ned2ecef_matrix.T
|
||||
self.ecef_from_ned_matrix = self.ned2ecef_matrix
|
||||
self.ned_from_ecef_matrix = self.ecef2ned_matrix
|
||||
|
||||
@classmethod
|
||||
def from_geodetic(cls, init_geodetic):
|
||||
init_ecef = geodetic2ecef(init_geodetic)
|
||||
return LocalCoord(init_geodetic, init_ecef)
|
||||
|
||||
@classmethod
|
||||
def from_ecef(cls, init_ecef):
|
||||
init_geodetic = ecef2geodetic(init_ecef)
|
||||
return LocalCoord(init_geodetic, init_ecef)
|
||||
|
||||
def ecef2ned(self, ecef):
|
||||
ecef = np.array(ecef)
|
||||
return np.dot(self.ecef2ned_matrix, (ecef - self.init_ecef).T).T
|
||||
|
||||
def ned2ecef(self, ned):
|
||||
ned = np.array(ned)
|
||||
# Transpose so that init_ecef will broadcast correctly for 1d or 2d ned.
|
||||
return (np.dot(self.ned2ecef_matrix, ned.T).T + self.init_ecef)
|
||||
|
||||
def geodetic2ned(self, geodetic):
|
||||
ecef = geodetic2ecef(geodetic)
|
||||
return self.ecef2ned(ecef)
|
||||
|
||||
def ned2geodetic(self, ned):
|
||||
ecef = self.ned2ecef(ned)
|
||||
return ecef2geodetic(ecef)
|
||||
|
|
|
@ -0,0 +1,147 @@
|
|||
#define _USE_MATH_DEFINES
|
||||
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <eigen3/Eigen/Dense>
|
||||
|
||||
#include "orientation.hpp"
|
||||
#include "coordinates.hpp"
|
||||
|
||||
Eigen::Quaterniond ensure_unique(Eigen::Quaterniond quat){
|
||||
if (quat.w() > 0){
|
||||
return quat;
|
||||
} else {
|
||||
return Eigen::Quaterniond(-quat.w(), -quat.x(), -quat.y(), -quat.z());
|
||||
}
|
||||
}
|
||||
|
||||
Eigen::Quaterniond euler2quat(Eigen::Vector3d euler){
|
||||
Eigen::Quaterniond q;
|
||||
|
||||
q = Eigen::AngleAxisd(euler(2), Eigen::Vector3d::UnitZ())
|
||||
* Eigen::AngleAxisd(euler(1), Eigen::Vector3d::UnitY())
|
||||
* Eigen::AngleAxisd(euler(0), Eigen::Vector3d::UnitX());
|
||||
return ensure_unique(q);
|
||||
}
|
||||
|
||||
|
||||
Eigen::Vector3d quat2euler(Eigen::Quaterniond quat){
|
||||
// TODO: switch to eigen implementation if the range of the Euler angles doesn't matter anymore
|
||||
// Eigen::Vector3d euler = quat.toRotationMatrix().eulerAngles(2, 1, 0);
|
||||
// return {euler(2), euler(1), euler(0)};
|
||||
double gamma = atan2(2 * (quat.w() * quat.x() + quat.y() * quat.z()), 1 - 2 * (quat.x()*quat.x() + quat.y()*quat.y()));
|
||||
double theta = asin(2 * (quat.w() * quat.y() - quat.z() * quat.x()));
|
||||
double psi = atan2(2 * (quat.w() * quat.z() + quat.x() * quat.y()), 1 - 2 * (quat.y()*quat.y() + quat.z()*quat.z()));
|
||||
return {gamma, theta, psi};
|
||||
}
|
||||
|
||||
Eigen::Matrix3d quat2rot(Eigen::Quaterniond quat){
|
||||
return quat.toRotationMatrix();
|
||||
}
|
||||
|
||||
Eigen::Quaterniond rot2quat(Eigen::Matrix3d rot){
|
||||
return ensure_unique(Eigen::Quaterniond(rot));
|
||||
}
|
||||
|
||||
Eigen::Matrix3d euler2rot(Eigen::Vector3d euler){
|
||||
return quat2rot(euler2quat(euler));
|
||||
}
|
||||
|
||||
Eigen::Vector3d rot2euler(Eigen::Matrix3d rot){
|
||||
return quat2euler(rot2quat(rot));
|
||||
}
|
||||
|
||||
Eigen::Matrix3d rot_matrix(double roll, double pitch, double yaw){
|
||||
return euler2rot({roll, pitch, yaw});
|
||||
}
|
||||
|
||||
Eigen::Matrix3d rot(Eigen::Vector3d axis, double angle){
|
||||
Eigen::Quaterniond q;
|
||||
q = Eigen::AngleAxisd(angle, axis);
|
||||
return q.toRotationMatrix();
|
||||
}
|
||||
|
||||
|
||||
Eigen::Vector3d ecef_euler_from_ned(ECEF ecef_init, Eigen::Vector3d ned_pose) {
|
||||
/*
|
||||
Using Rotations to Build Aerospace Coordinate Systems
|
||||
Don Koks
|
||||
https://apps.dtic.mil/dtic/tr/fulltext/u2/a484864.pdf
|
||||
*/
|
||||
LocalCoord converter = LocalCoord(ecef_init);
|
||||
Eigen::Vector3d zero = ecef_init.to_vector();
|
||||
|
||||
Eigen::Vector3d x0 = converter.ned2ecef({1, 0, 0}).to_vector() - zero;
|
||||
Eigen::Vector3d y0 = converter.ned2ecef({0, 1, 0}).to_vector() - zero;
|
||||
Eigen::Vector3d z0 = converter.ned2ecef({0, 0, 1}).to_vector() - zero;
|
||||
|
||||
Eigen::Vector3d x1 = rot(z0, ned_pose(2)) * x0;
|
||||
Eigen::Vector3d y1 = rot(z0, ned_pose(2)) * y0;
|
||||
Eigen::Vector3d z1 = rot(z0, ned_pose(2)) * z0;
|
||||
|
||||
Eigen::Vector3d x2 = rot(y1, ned_pose(1)) * x1;
|
||||
Eigen::Vector3d y2 = rot(y1, ned_pose(1)) * y1;
|
||||
Eigen::Vector3d z2 = rot(y1, ned_pose(1)) * z1;
|
||||
|
||||
Eigen::Vector3d x3 = rot(x2, ned_pose(0)) * x2;
|
||||
Eigen::Vector3d y3 = rot(x2, ned_pose(0)) * y2;
|
||||
|
||||
|
||||
x0 = Eigen::Vector3d(1, 0, 0);
|
||||
y0 = Eigen::Vector3d(0, 1, 0);
|
||||
z0 = Eigen::Vector3d(0, 0, 1);
|
||||
|
||||
double psi = atan2(x3.dot(y0), x3.dot(x0));
|
||||
double theta = atan2(-x3.dot(z0), sqrt(pow(x3.dot(x0), 2) + pow(x3.dot(y0), 2)));
|
||||
|
||||
y2 = rot(z0, psi) * y0;
|
||||
z2 = rot(y2, theta) * z0;
|
||||
|
||||
double phi = atan2(y3.dot(z2), y3.dot(y2));
|
||||
|
||||
return {phi, theta, psi};
|
||||
}
|
||||
|
||||
Eigen::Vector3d ned_euler_from_ecef(ECEF ecef_init, Eigen::Vector3d ecef_pose){
|
||||
/*
|
||||
Using Rotations to Build Aerospace Coordinate Systems
|
||||
Don Koks
|
||||
https://apps.dtic.mil/dtic/tr/fulltext/u2/a484864.pdf
|
||||
*/
|
||||
LocalCoord converter = LocalCoord(ecef_init);
|
||||
|
||||
Eigen::Vector3d x0 = Eigen::Vector3d(1, 0, 0);
|
||||
Eigen::Vector3d y0 = Eigen::Vector3d(0, 1, 0);
|
||||
Eigen::Vector3d z0 = Eigen::Vector3d(0, 0, 1);
|
||||
|
||||
Eigen::Vector3d x1 = rot(z0, ecef_pose(2)) * x0;
|
||||
Eigen::Vector3d y1 = rot(z0, ecef_pose(2)) * y0;
|
||||
Eigen::Vector3d z1 = rot(z0, ecef_pose(2)) * z0;
|
||||
|
||||
Eigen::Vector3d x2 = rot(y1, ecef_pose(1)) * x1;
|
||||
Eigen::Vector3d y2 = rot(y1, ecef_pose(1)) * y1;
|
||||
Eigen::Vector3d z2 = rot(y1, ecef_pose(1)) * z1;
|
||||
|
||||
Eigen::Vector3d x3 = rot(x2, ecef_pose(0)) * x2;
|
||||
Eigen::Vector3d y3 = rot(x2, ecef_pose(0)) * y2;
|
||||
|
||||
Eigen::Vector3d zero = ecef_init.to_vector();
|
||||
x0 = converter.ned2ecef({1, 0, 0}).to_vector() - zero;
|
||||
y0 = converter.ned2ecef({0, 1, 0}).to_vector() - zero;
|
||||
z0 = converter.ned2ecef({0, 0, 1}).to_vector() - zero;
|
||||
|
||||
double psi = atan2(x3.dot(y0), x3.dot(x0));
|
||||
double theta = atan2(-x3.dot(z0), sqrt(pow(x3.dot(x0), 2) + pow(x3.dot(y0), 2)));
|
||||
|
||||
y2 = rot(z0, psi) * y0;
|
||||
z2 = rot(y2, theta) * z0;
|
||||
|
||||
double phi = atan2(y3.dot(z2), y3.dot(y2));
|
||||
|
||||
return {phi, theta, psi};
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main(void){
|
||||
}
|
|
@ -0,0 +1,17 @@
|
|||
#pragma once
|
||||
#include <eigen3/Eigen/Dense>
|
||||
#include "coordinates.hpp"
|
||||
|
||||
|
||||
Eigen::Quaterniond ensure_unique(Eigen::Quaterniond quat);
|
||||
|
||||
Eigen::Quaterniond euler2quat(Eigen::Vector3d euler);
|
||||
Eigen::Vector3d quat2euler(Eigen::Quaterniond quat);
|
||||
Eigen::Matrix3d quat2rot(Eigen::Quaterniond quat);
|
||||
Eigen::Quaterniond rot2quat(Eigen::Matrix3d rot);
|
||||
Eigen::Matrix3d euler2rot(Eigen::Vector3d euler);
|
||||
Eigen::Vector3d rot2euler(Eigen::Matrix3d rot);
|
||||
Eigen::Matrix3d rot_matrix(double roll, double pitch, double yaw);
|
||||
Eigen::Matrix3d rot(Eigen::Vector3d axis, double angle);
|
||||
Eigen::Vector3d ecef_euler_from_ned(ECEF ecef_init, Eigen::Vector3d ned_pose);
|
||||
Eigen::Vector3d ned_euler_from_ecef(ECEF ecef_init, Eigen::Vector3d ecef_pose);
|
|
@ -1,125 +1,47 @@
|
|||
'''
|
||||
Vectorized functions that transform between
|
||||
rotation matrices, euler angles and quaternions.
|
||||
All support lists, array or array of arrays as inputs.
|
||||
Supports both x2y and y_from_x format (y_from_x preferred!).
|
||||
'''
|
||||
|
||||
# pylint: skip-file
|
||||
import numpy as np
|
||||
from numpy import dot, inner, array, linalg
|
||||
from common.transformations.coordinates import LocalCoord
|
||||
|
||||
from common.transformations.transformations import (ecef_euler_from_ned_single,
|
||||
euler2quat_single,
|
||||
euler2rot_single,
|
||||
ned_euler_from_ecef_single,
|
||||
quat2euler_single,
|
||||
quat2rot_single,
|
||||
rot2euler_single,
|
||||
rot2quat_single,
|
||||
rot_matrix)
|
||||
|
||||
|
||||
def euler2quat(eulers):
|
||||
eulers = array(eulers)
|
||||
if len(eulers.shape) > 1:
|
||||
output_shape = (-1, 4)
|
||||
else:
|
||||
output_shape = (4,)
|
||||
eulers = np.atleast_2d(eulers)
|
||||
gamma, theta, psi = eulers[:, 0], eulers[:, 1], eulers[:, 2]
|
||||
def numpy_wrap(function, input_shape, output_shape):
|
||||
"""Wrap a function to take either an input or list of inputs and return the correct shape"""
|
||||
def f(*inps):
|
||||
*args, inp = inps
|
||||
inp = np.array(inp)
|
||||
shape = inp.shape
|
||||
|
||||
q0 = np.cos(gamma / 2) * np.cos(theta / 2) * np.cos(psi / 2) + \
|
||||
np.sin(gamma / 2) * np.sin(theta / 2) * np.sin(psi / 2)
|
||||
q1 = np.sin(gamma / 2) * np.cos(theta / 2) * np.cos(psi / 2) - \
|
||||
np.cos(gamma / 2) * np.sin(theta / 2) * np.sin(psi / 2)
|
||||
q2 = np.cos(gamma / 2) * np.sin(theta / 2) * np.cos(psi / 2) + \
|
||||
np.sin(gamma / 2) * np.cos(theta / 2) * np.sin(psi / 2)
|
||||
q3 = np.cos(gamma / 2) * np.cos(theta / 2) * np.sin(psi / 2) - \
|
||||
np.sin(gamma / 2) * np.sin(theta / 2) * np.cos(psi / 2)
|
||||
if len(shape) == len(input_shape):
|
||||
out_shape = output_shape
|
||||
else:
|
||||
out_shape = (shape[0],) + output_shape
|
||||
|
||||
quats = array([q0, q1, q2, q3]).T
|
||||
for i in range(len(quats)):
|
||||
if quats[i, 0] < 0:
|
||||
quats[i] = -quats[i]
|
||||
return quats.reshape(output_shape)
|
||||
# Add empty dimension if inputs is not a list
|
||||
if len(shape) == len(input_shape):
|
||||
inp.shape = (1, ) + inp.shape
|
||||
|
||||
result = np.asarray([function(*args, i) for i in inp])
|
||||
result.shape = out_shape
|
||||
return result
|
||||
return f
|
||||
|
||||
|
||||
def quat2euler(quats):
|
||||
quats = array(quats)
|
||||
if len(quats.shape) > 1:
|
||||
output_shape = (-1, 3)
|
||||
else:
|
||||
output_shape = (3,)
|
||||
quats = np.atleast_2d(quats)
|
||||
q0, q1, q2, q3 = quats[:, 0], quats[:, 1], quats[:, 2], quats[:, 3]
|
||||
|
||||
gamma = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1**2 + q2**2))
|
||||
theta = np.arcsin(2 * (q0 * q2 - q3 * q1))
|
||||
psi = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2**2 + q3**2))
|
||||
|
||||
eulers = array([gamma, theta, psi]).T
|
||||
return eulers.reshape(output_shape)
|
||||
|
||||
|
||||
def quat2rot(quats):
|
||||
quats = array(quats)
|
||||
input_shape = quats.shape
|
||||
quats = np.atleast_2d(quats)
|
||||
Rs = np.zeros((quats.shape[0], 3, 3))
|
||||
q0 = quats[:, 0]
|
||||
q1 = quats[:, 1]
|
||||
q2 = quats[:, 2]
|
||||
q3 = quats[:, 3]
|
||||
Rs[:, 0, 0] = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3
|
||||
Rs[:, 0, 1] = 2 * (q1 * q2 - q0 * q3)
|
||||
Rs[:, 0, 2] = 2 * (q0 * q2 + q1 * q3)
|
||||
Rs[:, 1, 0] = 2 * (q1 * q2 + q0 * q3)
|
||||
Rs[:, 1, 1] = q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3
|
||||
Rs[:, 1, 2] = 2 * (q2 * q3 - q0 * q1)
|
||||
Rs[:, 2, 0] = 2 * (q1 * q3 - q0 * q2)
|
||||
Rs[:, 2, 1] = 2 * (q0 * q1 + q2 * q3)
|
||||
Rs[:, 2, 2] = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3
|
||||
|
||||
if len(input_shape) < 2:
|
||||
return Rs[0]
|
||||
else:
|
||||
return Rs
|
||||
|
||||
|
||||
def rot2quat(rots):
|
||||
input_shape = rots.shape
|
||||
if len(input_shape) < 3:
|
||||
rots = array([rots])
|
||||
K3 = np.empty((len(rots), 4, 4))
|
||||
K3[:, 0, 0] = (rots[:, 0, 0] - rots[:, 1, 1] - rots[:, 2, 2]) / 3.0
|
||||
K3[:, 0, 1] = (rots[:, 1, 0] + rots[:, 0, 1]) / 3.0
|
||||
K3[:, 0, 2] = (rots[:, 2, 0] + rots[:, 0, 2]) / 3.0
|
||||
K3[:, 0, 3] = (rots[:, 1, 2] - rots[:, 2, 1]) / 3.0
|
||||
K3[:, 1, 0] = K3[:, 0, 1]
|
||||
K3[:, 1, 1] = (rots[:, 1, 1] - rots[:, 0, 0] - rots[:, 2, 2]) / 3.0
|
||||
K3[:, 1, 2] = (rots[:, 2, 1] + rots[:, 1, 2]) / 3.0
|
||||
K3[:, 1, 3] = (rots[:, 2, 0] - rots[:, 0, 2]) / 3.0
|
||||
K3[:, 2, 0] = K3[:, 0, 2]
|
||||
K3[:, 2, 1] = K3[:, 1, 2]
|
||||
K3[:, 2, 2] = (rots[:, 2, 2] - rots[:, 0, 0] - rots[:, 1, 1]) / 3.0
|
||||
K3[:, 2, 3] = (rots[:, 0, 1] - rots[:, 1, 0]) / 3.0
|
||||
K3[:, 3, 0] = K3[:, 0, 3]
|
||||
K3[:, 3, 1] = K3[:, 1, 3]
|
||||
K3[:, 3, 2] = K3[:, 2, 3]
|
||||
K3[:, 3, 3] = (rots[:, 0, 0] + rots[:, 1, 1] + rots[:, 2, 2]) / 3.0
|
||||
q = np.empty((len(rots), 4))
|
||||
for i in range(len(rots)):
|
||||
_, eigvecs = linalg.eigh(K3[i].T)
|
||||
eigvecs = eigvecs[:, 3:]
|
||||
q[i, 0] = eigvecs[-1]
|
||||
q[i, 1:] = -eigvecs[:-1].flatten()
|
||||
if q[i, 0] < 0:
|
||||
q[i] = -q[i]
|
||||
|
||||
if len(input_shape) < 3:
|
||||
return q[0]
|
||||
else:
|
||||
return q
|
||||
|
||||
|
||||
def euler2rot(eulers):
|
||||
return rotations_from_quats(euler2quat(eulers))
|
||||
|
||||
|
||||
def rot2euler(rots):
|
||||
return quat2euler(quats_from_rotations(rots))
|
||||
|
||||
euler2quat = numpy_wrap(euler2quat_single, (3,), (4,))
|
||||
quat2euler = numpy_wrap(quat2euler_single, (4,), (3,))
|
||||
quat2rot = numpy_wrap(quat2rot_single, (4,), (3, 3))
|
||||
rot2quat = numpy_wrap(rot2quat_single, (3, 3), (4,))
|
||||
euler2rot = numpy_wrap(euler2rot_single, (3,), (3, 3))
|
||||
rot2euler = numpy_wrap(rot2euler_single, (3, 3), (3,))
|
||||
ecef_euler_from_ned = numpy_wrap(ecef_euler_from_ned_single, (3,), (3,))
|
||||
ned_euler_from_ecef = numpy_wrap(ned_euler_from_ecef_single, (3,), (3,))
|
||||
|
||||
quats_from_rotations = rot2quat
|
||||
quat_from_rot = rot2quat
|
||||
|
@ -130,162 +52,3 @@ euler_from_rot = rot2euler
|
|||
euler_from_quat = quat2euler
|
||||
rot_from_euler = euler2rot
|
||||
quat_from_euler = euler2quat
|
||||
|
||||
|
||||
'''
|
||||
Random helpers below
|
||||
'''
|
||||
|
||||
|
||||
def quat_product(q, r):
|
||||
t = np.zeros(4)
|
||||
t[0] = r[0] * q[0] - r[1] * q[1] - r[2] * q[2] - r[3] * q[3]
|
||||
t[1] = r[0] * q[1] + r[1] * q[0] - r[2] * q[3] + r[3] * q[2]
|
||||
t[2] = r[0] * q[2] + r[1] * q[3] + r[2] * q[0] - r[3] * q[1]
|
||||
t[3] = r[0] * q[3] - r[1] * q[2] + r[2] * q[1] + r[3] * q[0]
|
||||
return t
|
||||
|
||||
|
||||
def rot_matrix(roll, pitch, yaw):
|
||||
cr, sr = np.cos(roll), np.sin(roll)
|
||||
cp, sp = np.cos(pitch), np.sin(pitch)
|
||||
cy, sy = np.cos(yaw), np.sin(yaw)
|
||||
rr = array([[1, 0, 0], [0, cr, -sr], [0, sr, cr]])
|
||||
rp = array([[cp, 0, sp], [0, 1, 0], [-sp, 0, cp]])
|
||||
ry = array([[cy, -sy, 0], [sy, cy, 0], [0, 0, 1]])
|
||||
return ry.dot(rp.dot(rr))
|
||||
|
||||
|
||||
def rot(axis, angle):
|
||||
# Rotates around an arbitrary axis
|
||||
ret_1 = (1 - np.cos(angle)) * array([[axis[0]**2, axis[0] * axis[1], axis[0] * axis[2]], [
|
||||
axis[1] * axis[0], axis[1]**2, axis[1] * axis[2]
|
||||
], [axis[2] * axis[0], axis[2] * axis[1], axis[2]**2]])
|
||||
ret_2 = np.cos(angle) * np.eye(3)
|
||||
ret_3 = np.sin(angle) * array([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]],
|
||||
[-axis[1], axis[0], 0]])
|
||||
return ret_1 + ret_2 + ret_3
|
||||
|
||||
|
||||
def ecef_euler_from_ned(ned_ecef_init, ned_pose):
|
||||
'''
|
||||
Got it from here:
|
||||
Using Rotations to Build Aerospace Coordinate Systems
|
||||
-Don Koks
|
||||
'''
|
||||
converter = LocalCoord.from_ecef(ned_ecef_init)
|
||||
x0 = converter.ned2ecef([1, 0, 0]) - converter.ned2ecef([0, 0, 0])
|
||||
y0 = converter.ned2ecef([0, 1, 0]) - converter.ned2ecef([0, 0, 0])
|
||||
z0 = converter.ned2ecef([0, 0, 1]) - converter.ned2ecef([0, 0, 0])
|
||||
|
||||
x1 = rot(z0, ned_pose[2]).dot(x0)
|
||||
y1 = rot(z0, ned_pose[2]).dot(y0)
|
||||
z1 = rot(z0, ned_pose[2]).dot(z0)
|
||||
|
||||
x2 = rot(y1, ned_pose[1]).dot(x1)
|
||||
y2 = rot(y1, ned_pose[1]).dot(y1)
|
||||
z2 = rot(y1, ned_pose[1]).dot(z1)
|
||||
|
||||
x3 = rot(x2, ned_pose[0]).dot(x2)
|
||||
y3 = rot(x2, ned_pose[0]).dot(y2)
|
||||
#z3 = rot(x2, ned_pose[0]).dot(z2)
|
||||
|
||||
x0 = array([1, 0, 0])
|
||||
y0 = array([0, 1, 0])
|
||||
z0 = array([0, 0, 1])
|
||||
|
||||
psi = np.arctan2(inner(x3, y0), inner(x3, x0))
|
||||
theta = np.arctan2(-inner(x3, z0), np.sqrt(inner(x3, x0)**2 + inner(x3, y0)**2))
|
||||
y2 = rot(z0, psi).dot(y0)
|
||||
z2 = rot(y2, theta).dot(z0)
|
||||
phi = np.arctan2(inner(y3, z2), inner(y3, y2))
|
||||
|
||||
ret = array([phi, theta, psi])
|
||||
return ret
|
||||
|
||||
|
||||
def ned_euler_from_ecef(ned_ecef_init, ecef_poses):
|
||||
'''
|
||||
Got the math from here:
|
||||
Using Rotations to Build Aerospace Coordinate Systems
|
||||
-Don Koks
|
||||
|
||||
Also accepts array of ecef_poses and array of ned_ecef_inits.
|
||||
Where each row is a pose and an ecef_init.
|
||||
'''
|
||||
ned_ecef_init = array(ned_ecef_init)
|
||||
ecef_poses = array(ecef_poses)
|
||||
output_shape = ecef_poses.shape
|
||||
ned_ecef_init = np.atleast_2d(ned_ecef_init)
|
||||
if ned_ecef_init.shape[0] == 1:
|
||||
ned_ecef_init = np.tile(ned_ecef_init[0], (output_shape[0], 1))
|
||||
ecef_poses = np.atleast_2d(ecef_poses)
|
||||
|
||||
ned_poses = np.zeros(ecef_poses.shape)
|
||||
for i, ecef_pose in enumerate(ecef_poses):
|
||||
converter = LocalCoord.from_ecef(ned_ecef_init[i])
|
||||
x0 = array([1, 0, 0])
|
||||
y0 = array([0, 1, 0])
|
||||
z0 = array([0, 0, 1])
|
||||
|
||||
x1 = rot(z0, ecef_pose[2]).dot(x0)
|
||||
y1 = rot(z0, ecef_pose[2]).dot(y0)
|
||||
z1 = rot(z0, ecef_pose[2]).dot(z0)
|
||||
|
||||
x2 = rot(y1, ecef_pose[1]).dot(x1)
|
||||
y2 = rot(y1, ecef_pose[1]).dot(y1)
|
||||
z2 = rot(y1, ecef_pose[1]).dot(z1)
|
||||
|
||||
x3 = rot(x2, ecef_pose[0]).dot(x2)
|
||||
y3 = rot(x2, ecef_pose[0]).dot(y2)
|
||||
#z3 = rot(x2, ecef_pose[0]).dot(z2)
|
||||
|
||||
x0 = converter.ned2ecef([1, 0, 0]) - converter.ned2ecef([0, 0, 0])
|
||||
y0 = converter.ned2ecef([0, 1, 0]) - converter.ned2ecef([0, 0, 0])
|
||||
z0 = converter.ned2ecef([0, 0, 1]) - converter.ned2ecef([0, 0, 0])
|
||||
|
||||
psi = np.arctan2(inner(x3, y0), inner(x3, x0))
|
||||
theta = np.arctan2(-inner(x3, z0), np.sqrt(inner(x3, x0)**2 + inner(x3, y0)**2))
|
||||
y2 = rot(z0, psi).dot(y0)
|
||||
z2 = rot(y2, theta).dot(z0)
|
||||
phi = np.arctan2(inner(y3, z2), inner(y3, y2))
|
||||
ned_poses[i] = array([phi, theta, psi])
|
||||
|
||||
return ned_poses.reshape(output_shape)
|
||||
|
||||
|
||||
def ecef2car(car_ecef, psi, theta, points_ecef, ned_converter):
|
||||
"""
|
||||
TODO: add roll rotation
|
||||
Converts an array of points in ecef coordinates into
|
||||
x-forward, y-left, z-up coordinates
|
||||
Parameters
|
||||
----------
|
||||
psi: yaw, radian
|
||||
theta: pitch, radian
|
||||
Returns
|
||||
-------
|
||||
[x, y, z] coordinates in car frame
|
||||
"""
|
||||
|
||||
# input is an array of points in ecef cocrdinates
|
||||
# output is an array of points in car's coordinate (x-front, y-left, z-up)
|
||||
|
||||
# convert points to NED
|
||||
points_ned = []
|
||||
for p in points_ecef:
|
||||
points_ned.append(ned_converter.ecef2ned_matrix.dot(array(p) - car_ecef))
|
||||
|
||||
points_ned = np.vstack(points_ned).T
|
||||
|
||||
# n, e, d -> x, y, z
|
||||
# Calculate relative postions and rotate wrt to heading and pitch of car
|
||||
invert_R = array([[1., 0., 0.], [0., -1., 0.], [0., 0., -1.]])
|
||||
|
||||
c, s = np.cos(psi), np.sin(psi)
|
||||
yaw_R = array([[c, s, 0.], [-s, c, 0.], [0., 0., 1.]])
|
||||
|
||||
c, s = np.cos(theta), np.sin(theta)
|
||||
pitch_R = array([[c, 0., -s], [0., 1., 0.], [s, 0., c]])
|
||||
|
||||
return dot(pitch_R, dot(yaw_R, dot(invert_R, points_ned)))
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
import os
|
||||
import numpy
|
||||
import sysconfig
|
||||
|
||||
from Cython.Build import cythonize
|
||||
from Cython.Distutils import build_ext
|
||||
from distutils.core import Extension, setup # pylint: disable=import-error,no-name-in-module
|
||||
|
||||
def get_ext_filename_without_platform_suffix(filename):
|
||||
name, ext = os.path.splitext(filename)
|
||||
ext_suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
||||
|
||||
if ext_suffix == ext:
|
||||
return filename
|
||||
|
||||
ext_suffix = ext_suffix.replace(ext, '')
|
||||
idx = name.find(ext_suffix)
|
||||
|
||||
if idx == -1:
|
||||
return filename
|
||||
else:
|
||||
return name[:idx] + ext
|
||||
|
||||
|
||||
class BuildExtWithoutPlatformSuffix(build_ext):
|
||||
def get_ext_filename(self, ext_name):
|
||||
filename = super().get_ext_filename(ext_name)
|
||||
return get_ext_filename_without_platform_suffix(filename)
|
||||
|
||||
|
||||
setup(
|
||||
name='Cython transformations wrapper',
|
||||
cmdclass={'build_ext': BuildExtWithoutPlatformSuffix},
|
||||
ext_modules=cythonize(
|
||||
Extension(
|
||||
"transformations",
|
||||
sources=["transformations.pyx"],
|
||||
language="c++",
|
||||
extra_compile_args=["-std=c++14"],
|
||||
include_dirs=[numpy.get_include()],
|
||||
)
|
||||
))
|
|
@ -11,12 +11,6 @@ geodetic_positions = np.array([[37.7610403, -122.4778699, 115],
|
|||
[15.1392514, 103.6976037, 24],
|
||||
[24.2302229, 44.2835412, 1650]])
|
||||
|
||||
geodetic_positions_radians = np.array([[0.65905448, -2.13764209, 115],
|
||||
[0.47968789, -1.19706477, 2380],
|
||||
[0.5670869, -1.98361593, -6],
|
||||
[0.26422978, 1.80986461, 24],
|
||||
[0.42289717, 0.7728936, 1650]])
|
||||
|
||||
ecef_positions = np.array([[-2711076.55270557, -4259167.14692758, 3884579.87669935],
|
||||
[ 2068042.69652729, -5273435.40316622, 2927004.89190746],
|
||||
[-2160412.60461669, -4932588.89873832, 3406542.29652851],
|
||||
|
@ -78,9 +72,6 @@ class TestNED(unittest.TestCase):
|
|||
np.testing.assert_allclose(geodetic_positions[:, 2], coord.ecef2geodetic(ecef_positions)[:, 2], rtol=1e-9, atol=1e-4)
|
||||
np.testing.assert_allclose(ecef_positions, coord.geodetic2ecef(geodetic_positions), rtol=1e-9)
|
||||
|
||||
np.testing.assert_allclose(geodetic_positions_radians[0], coord.ecef2geodetic(ecef_positions[0], radians=True), rtol=1e-5)
|
||||
np.testing.assert_allclose(geodetic_positions_radians[:, :2], coord.ecef2geodetic(ecef_positions, radians=True)[:, :2], rtol=1e-7)
|
||||
np.testing.assert_allclose(geodetic_positions_radians[:, 2], coord.ecef2geodetic(ecef_positions, radians=True)[:, 2], rtol=1e-7, atol=1e-4)
|
||||
|
||||
def test_ned(self):
|
||||
for ecef_pos in ecef_positions:
|
||||
|
|
|
@ -61,7 +61,7 @@ class TestOrientation(unittest.TestCase):
|
|||
for i in range(len(eulers)):
|
||||
np.testing.assert_allclose(ned_eulers[i], ned_euler_from_ecef(ecef_positions[i], eulers[i]), rtol=1e-7)
|
||||
#np.testing.assert_allclose(eulers[i], ecef_euler_from_ned(ecef_positions[i], ned_eulers[i]), rtol=1e-7)
|
||||
np.testing.assert_allclose(ned_eulers, ned_euler_from_ecef(ecef_positions, eulers), rtol=1e-7)
|
||||
# np.testing.assert_allclose(ned_eulers, ned_euler_from_ecef(ecef_positions, eulers), rtol=1e-7)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
from libcpp cimport bool
|
||||
|
||||
cdef extern from "orientation.cc":
|
||||
pass
|
||||
|
||||
cdef extern from "orientation.hpp":
|
||||
cdef cppclass Quaternion "Eigen::Quaterniond":
|
||||
Quaternion()
|
||||
Quaternion(double, double, double, double)
|
||||
double w()
|
||||
double x()
|
||||
double y()
|
||||
double z()
|
||||
|
||||
cdef cppclass Vector3 "Eigen::Vector3d":
|
||||
Vector3()
|
||||
Vector3(double, double, double)
|
||||
double operator()(int)
|
||||
|
||||
cdef cppclass Matrix3 "Eigen::Matrix3d":
|
||||
Matrix3()
|
||||
Matrix3(double*)
|
||||
|
||||
double operator()(int, int)
|
||||
|
||||
Quaternion euler2quat(Vector3)
|
||||
Vector3 quat2euler(Quaternion)
|
||||
Matrix3 quat2rot(Quaternion)
|
||||
Quaternion rot2quat(Matrix3)
|
||||
Vector3 rot2euler(Matrix3)
|
||||
Matrix3 euler2rot(Vector3)
|
||||
Matrix3 rot_matrix(double, double, double)
|
||||
Vector3 ecef_euler_from_ned(ECEF, Vector3)
|
||||
Vector3 ned_euler_from_ecef(ECEF, Vector3)
|
||||
|
||||
|
||||
cdef extern from "coordinates.cc":
|
||||
cdef struct ECEF:
|
||||
double x
|
||||
double y
|
||||
double z
|
||||
|
||||
cdef struct NED:
|
||||
double n
|
||||
double e
|
||||
double d
|
||||
|
||||
cdef struct Geodetic:
|
||||
double lat
|
||||
double lon
|
||||
double alt
|
||||
bool radians
|
||||
|
||||
ECEF geodetic2ecef(Geodetic)
|
||||
Geodetic ecef2geodetic(ECEF)
|
||||
|
||||
cdef cppclass LocalCoord_c "LocalCoord":
|
||||
LocalCoord_c(Geodetic, ECEF)
|
||||
LocalCoord_c(Geodetic)
|
||||
LocalCoord_c(ECEF)
|
||||
|
||||
NED ecef2ned(ECEF)
|
||||
ECEF ned2ecef(NED)
|
||||
NED geodetic2ned(Geodetic)
|
||||
Geodetic ned2geodetic(NED)
|
||||
|
||||
cdef extern from "coordinates.hpp":
|
||||
pass
|
|
@ -0,0 +1,156 @@
|
|||
from transformations cimport Matrix3, Vector3, Quaternion
|
||||
from transformations cimport ECEF, NED, Geodetic
|
||||
|
||||
from transformations cimport euler2quat as euler2quat_c
|
||||
from transformations cimport quat2euler as quat2euler_c
|
||||
from transformations cimport quat2rot as quat2rot_c
|
||||
from transformations cimport rot2quat as rot2quat_c
|
||||
from transformations cimport euler2rot as euler2rot_c
|
||||
from transformations cimport rot2euler as rot2euler_c
|
||||
from transformations cimport rot_matrix as rot_matrix_c
|
||||
from transformations cimport ecef_euler_from_ned as ecef_euler_from_ned_c
|
||||
from transformations cimport ned_euler_from_ecef as ned_euler_from_ecef_c
|
||||
from transformations cimport geodetic2ecef as geodetic2ecef_c
|
||||
from transformations cimport ecef2geodetic as ecef2geodetic_c
|
||||
from transformations cimport LocalCoord_c
|
||||
|
||||
|
||||
import cython
|
||||
import numpy as np
|
||||
cimport numpy as np
|
||||
|
||||
cdef np.ndarray[double, ndim=2] matrix2numpy(Matrix3 m):
|
||||
return np.array([
|
||||
[m(0, 0), m(0, 1), m(0, 2)],
|
||||
[m(1, 0), m(1, 1), m(1, 2)],
|
||||
[m(2, 0), m(2, 1), m(2, 2)],
|
||||
])
|
||||
|
||||
cdef Matrix3 numpy2matrix (np.ndarray[double, ndim=2, mode="fortran"] m):
|
||||
assert m.shape[0] == 3
|
||||
assert m.shape[1] == 3
|
||||
return Matrix3(<double*>m.data)
|
||||
|
||||
cdef ECEF list2ecef(ecef):
|
||||
cdef ECEF e;
|
||||
e.x = ecef[0]
|
||||
e.y = ecef[1]
|
||||
e.z = ecef[2]
|
||||
return e
|
||||
|
||||
cdef NED list2ned(ned):
|
||||
cdef NED n;
|
||||
n.n = ned[0]
|
||||
n.e = ned[1]
|
||||
n.d = ned[2]
|
||||
return n
|
||||
|
||||
cdef Geodetic list2geodetic(geodetic):
|
||||
cdef Geodetic g
|
||||
g.lat = geodetic[0]
|
||||
g.lon = geodetic[1]
|
||||
g.alt = geodetic[2]
|
||||
return g
|
||||
|
||||
def euler2quat_single(euler):
|
||||
cdef Vector3 e = Vector3(euler[0], euler[1], euler[2])
|
||||
cdef Quaternion q = euler2quat_c(e)
|
||||
return [q.w(), q.x(), q.y(), q.z()]
|
||||
|
||||
def quat2euler_single(quat):
|
||||
cdef Quaternion q = Quaternion(quat[0], quat[1], quat[2], quat[3])
|
||||
cdef Vector3 e = quat2euler_c(q);
|
||||
return [e(0), e(1), e(2)]
|
||||
|
||||
def quat2rot_single(quat):
|
||||
cdef Quaternion q = Quaternion(quat[0], quat[1], quat[2], quat[3])
|
||||
cdef Matrix3 r = quat2rot_c(q)
|
||||
return matrix2numpy(r)
|
||||
|
||||
def rot2quat_single(rot):
|
||||
cdef Matrix3 r = numpy2matrix(np.asfortranarray(rot, dtype=np.double))
|
||||
cdef Quaternion q = rot2quat_c(r)
|
||||
return [q.w(), q.x(), q.y(), q.z()]
|
||||
|
||||
def euler2rot_single(euler):
|
||||
cdef Vector3 e = Vector3(euler[0], euler[1], euler[2])
|
||||
cdef Matrix3 r = euler2rot_c(e)
|
||||
return matrix2numpy(r)
|
||||
|
||||
def rot2euler_single(rot):
|
||||
cdef Matrix3 r = numpy2matrix(np.asfortranarray(rot, dtype=np.double))
|
||||
cdef Vector3 e = rot2euler_c(r)
|
||||
return [e(0), e(1), e(2)]
|
||||
|
||||
def rot_matrix(roll, pitch, yaw):
|
||||
return matrix2numpy(rot_matrix_c(roll, pitch, yaw))
|
||||
|
||||
def ecef_euler_from_ned_single(ecef_init, ned_pose):
|
||||
cdef ECEF init = list2ecef(ecef_init)
|
||||
cdef Vector3 pose = Vector3(ned_pose[0], ned_pose[1], ned_pose[2])
|
||||
|
||||
cdef Vector3 e = ecef_euler_from_ned_c(init, pose)
|
||||
return [e(0), e(1), e(2)]
|
||||
|
||||
def ned_euler_from_ecef_single(ecef_init, ecef_pose):
|
||||
cdef ECEF init = list2ecef(ecef_init)
|
||||
cdef Vector3 pose = Vector3(ecef_pose[0], ecef_pose[1], ecef_pose[2])
|
||||
|
||||
cdef Vector3 e = ned_euler_from_ecef_c(init, pose)
|
||||
return [e(0), e(1), e(2)]
|
||||
|
||||
def geodetic2ecef_single(geodetic):
|
||||
cdef Geodetic g = list2geodetic(geodetic)
|
||||
cdef ECEF e = geodetic2ecef_c(g)
|
||||
return [e.x, e.y, e.z]
|
||||
|
||||
def ecef2geodetic_single(ecef):
|
||||
cdef ECEF e = list2ecef(ecef)
|
||||
cdef Geodetic g = ecef2geodetic_c(e)
|
||||
return [g.lat, g.lon, g.alt]
|
||||
|
||||
|
||||
cdef class LocalCoord:
|
||||
cdef LocalCoord_c * lc
|
||||
|
||||
def __init__(self, geodetic=None, ecef=None):
|
||||
assert (geodetic is not None) or (ecef is not None)
|
||||
if geodetic is not None:
|
||||
self.lc = new LocalCoord_c(list2geodetic(geodetic))
|
||||
elif ecef is not None:
|
||||
self.lc = new LocalCoord_c(list2ecef(ecef))
|
||||
|
||||
@classmethod
|
||||
def from_geodetic(cls, geodetic):
|
||||
return cls(geodetic=geodetic)
|
||||
|
||||
@classmethod
|
||||
def from_ecef(cls, ecef):
|
||||
return cls(ecef=ecef)
|
||||
|
||||
def ecef2ned_single(self, ecef):
|
||||
assert self.lc
|
||||
cdef ECEF e = list2ecef(ecef)
|
||||
cdef NED n = self.lc.ecef2ned(e)
|
||||
return [n.n, n.e, n.d]
|
||||
|
||||
def ned2ecef_single(self, ned):
|
||||
assert self.lc
|
||||
cdef NED n = list2ned(ned)
|
||||
cdef ECEF e = self.lc.ned2ecef(n)
|
||||
return [e.x, e.y, e.z]
|
||||
|
||||
def geodetic2ned_single(self, geodetic):
|
||||
assert self.lc
|
||||
cdef Geodetic g = list2geodetic(geodetic)
|
||||
cdef NED n = self.lc.geodetic2ned(g)
|
||||
return [n.n, n.e, n.d]
|
||||
|
||||
def ned2geodetic_single(self, ned):
|
||||
assert self.lc
|
||||
cdef NED n = list2ned(ned)
|
||||
cdef Geodetic g = self.lc.ned2geodetic(n)
|
||||
return [g.lat, g.lon, g.alt]
|
||||
|
||||
def __dealloc__(self):
|
||||
del self.lc
|
|
@ -43,9 +43,18 @@ common/kalman/*
|
|||
|
||||
common/transformations/__init__.py
|
||||
common/transformations/camera.py
|
||||
common/transformations/coordinates.py
|
||||
common/transformations/model.py
|
||||
|
||||
common/transformations/SConscript
|
||||
common/transformations/setup.py
|
||||
common/transformations/coordinates.py
|
||||
common/transformations/coordinates.cc
|
||||
common/transformations/coordinates.hpp
|
||||
common/transformations/orientation.py
|
||||
common/transformations/orientation.cc
|
||||
common/transformations/orientation.hpp
|
||||
common/transformations/transformations.pxd
|
||||
common/transformations/transformations.pyx
|
||||
|
||||
common/api/__init__.py
|
||||
|
||||
|
|
|
@ -21,7 +21,6 @@ from sympy.utilities.lambdify import lambdify
|
|||
from rednose.helpers.sympy_helpers import euler_rotate
|
||||
|
||||
|
||||
OUTPUT_DECIMATION = 2
|
||||
VISION_DECIMATION = 2
|
||||
SENSOR_DECIMATION = 10
|
||||
|
||||
|
@ -194,7 +193,7 @@ class Localizer():
|
|||
|
||||
self.converter = coord.LocalCoord.from_geodetic([log.latitude, log.longitude, log.altitude])
|
||||
ecef_pos = self.converter.ned2ecef([0, 0, 0])
|
||||
ecef_vel = self.converter.ned2ecef_matrix.dot(np.array(log.vNED))
|
||||
ecef_vel = self.converter.ned2ecef(np.array(log.vNED)) - ecef_pos
|
||||
ecef_pos_R = np.diag([(3*log.verticalAccuracy)**2]*3)
|
||||
ecef_vel_R = np.diag([(log.speedAccuracy)**2]*3)
|
||||
|
||||
|
@ -263,14 +262,15 @@ class Localizer():
|
|||
self.update_kalman(current_time, ObservationKind.PHONE_ACCEL, [-v[2], -v[1], -v[0]])
|
||||
|
||||
def handle_live_calib(self, current_time, log):
|
||||
self.calib = log.rpyCalib
|
||||
self.device_from_calib = rot_from_euler(self.calib)
|
||||
self.calib_from_device = self.device_from_calib.T
|
||||
self.calibrated = log.calStatus == 1
|
||||
if len(log.rpyCalib):
|
||||
self.calib = log.rpyCalib
|
||||
self.device_from_calib = rot_from_euler(self.calib)
|
||||
self.calib_from_device = self.device_from_calib.T
|
||||
self.calibrated = log.calStatus == 1
|
||||
|
||||
def reset_kalman(self, current_time=None, init_orient=None):
|
||||
self.filter_time = current_time
|
||||
init_x = LiveKalman.initial_x
|
||||
init_x = LiveKalman.initial_x.copy()
|
||||
# too nonlinear to init on completely wrong
|
||||
if init_orient is not None:
|
||||
init_x[3:7] = init_orient
|
||||
|
@ -295,7 +295,6 @@ def locationd_thread(sm, pm, disabled_logs=None):
|
|||
pm = messaging.PubMaster(['liveLocationKalman'])
|
||||
|
||||
localizer = Localizer(disabled_logs=disabled_logs)
|
||||
camera_odometry_cnt = 0
|
||||
|
||||
while True:
|
||||
sm.update()
|
||||
|
@ -315,19 +314,16 @@ def locationd_thread(sm, pm, disabled_logs=None):
|
|||
localizer.handle_live_calib(t, sm[sock])
|
||||
|
||||
if sm.updated['cameraOdometry']:
|
||||
camera_odometry_cnt += 1
|
||||
t = sm.logMonoTime['cameraOdometry']
|
||||
msg = messaging.new_message('liveLocationKalman')
|
||||
msg.logMonoTime = t
|
||||
|
||||
if camera_odometry_cnt % OUTPUT_DECIMATION == 0:
|
||||
t = sm.logMonoTime['cameraOdometry']
|
||||
msg = messaging.new_message('liveLocationKalman')
|
||||
msg.logMonoTime = t
|
||||
msg.liveLocationKalman = localizer.liveLocationMsg(t * 1e-9)
|
||||
msg.liveLocationKalman.inputsOK = sm.all_alive_and_valid()
|
||||
|
||||
msg.liveLocationKalman = localizer.liveLocationMsg(t * 1e-9)
|
||||
msg.liveLocationKalman.inputsOK = sm.all_alive_and_valid()
|
||||
|
||||
gps_age = (t / 1e9) - localizer.last_gps_fix
|
||||
msg.liveLocationKalman.gpsOK = gps_age < 1.0
|
||||
pm.send('liveLocationKalman', msg)
|
||||
gps_age = (t / 1e9) - localizer.last_gps_fix
|
||||
msg.liveLocationKalman.gpsOK = gps_age < 1.0
|
||||
pm.send('liveLocationKalman', msg)
|
||||
|
||||
|
||||
def main(sm=None, pm=None):
|
||||
|
|
|
@ -70,7 +70,7 @@ def compare_logs(log1, log2, ignore_fields=None, ignore_msgs=None):
|
|||
if msg1_bytes != msg2_bytes:
|
||||
msg1_dict = msg1.to_dict(verbose=True)
|
||||
msg2_dict = msg2.to_dict(verbose=True)
|
||||
dd = dictdiffer.diff(msg1_dict, msg2_dict, ignore=ignore_fields, tolerance=0)
|
||||
dd = dictdiffer.diff(msg1_dict, msg2_dict, ignore=ignore_fields)
|
||||
diff.extend(dd)
|
||||
return diff
|
||||
|
||||
|
|
|
@ -66,7 +66,11 @@ class FakeSocket:
|
|||
class DumbSocket:
|
||||
def __init__(self, s=None):
|
||||
if s is not None:
|
||||
dat = messaging.new_message(s)
|
||||
try:
|
||||
dat = messaging.new_message(s)
|
||||
except capnp.lib.capnp.KjException: # pylint: disable=c-extension-no-member
|
||||
# lists
|
||||
dat = messaging.new_message(s, 0)
|
||||
self.data = dat.to_bytes()
|
||||
|
||||
def receive(self, non_blocking=False):
|
||||
|
@ -255,6 +259,17 @@ CONFIGS = [
|
|||
init_callback=get_car_params,
|
||||
should_recv_callback=None,
|
||||
),
|
||||
ProcessConfig(
|
||||
proc_name="locationd",
|
||||
pub_sub={
|
||||
"cameraOdometry": ["liveLocationKalman"],
|
||||
"sensorEvents": [], "gpsLocationExternal": [], "liveCalibration": [], "carState": [],
|
||||
},
|
||||
ignore=["logMonoTime", "valid"],
|
||||
init_callback=get_car_params,
|
||||
should_recv_callback=None,
|
||||
),
|
||||
|
||||
]
|
||||
|
||||
def replay_process(cfg, lr):
|
||||
|
|
|
@ -1 +1 @@
|
|||
0533f640ab27f7b5af57aa4ebf4a29200550b3e8
|
||||
834f4cd7e90ff266ced8ea142d7d7d05076186aa
|
Loading…
Reference in New Issue