ods777/tinygrad_repo/test/test_tensor.py

267 lines
10 KiB
Python

import numpy as np
import torch
import struct
import unittest, copy
import mmap
from tinygrad.tensor import Tensor, Device
from tinygrad.helpers import dtypes
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
from extra.utils import temp
x_init = np.random.randn(1,3).astype(np.float32)
U_init = np.random.randn(3,3).astype(np.float32)
V_init = np.random.randn(3,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
class TestTinygrad(unittest.TestCase):
def test_zerodim_initialization(self):
a = Tensor(55)
b = Tensor(3.14)
self.assertEqual(a.shape, ())
self.assertEqual(b.shape, ())
def test_plus_equals(self):
a = Tensor.randn(10,10)
b = Tensor.randn(10,10)
c = a + b
val1 = c.numpy()
a += b
val2 = a.numpy()
np.testing.assert_allclose(val1, val2)
def test_backward_pass(self):
def test_tinygrad():
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m).sum()
out.backward()
return out.numpy(), x.grad.numpy(), W.grad.numpy()
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m).sum()
out.backward()
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "this test uses more than 8 bufs which breaks webgpu") #TODO: remove after #1461
def test_backward_pass_diamond_model(self):
def test_tinygrad():
u = Tensor(U_init, requires_grad=True)
v = Tensor(V_init, requires_grad=True)
w = Tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = out.log_softmax()
out = out.sum()
out.backward()
return out.numpy(), u.grad.numpy(), v.grad.numpy(), w.grad.numpy()
def test_pytorch():
u = torch.tensor(U_init, requires_grad=True)
v = torch.tensor(V_init, requires_grad=True)
w = torch.tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.sum()
out.backward()
return out.detach().numpy(), u.grad, v.grad, w.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_nograd(self):
x = Tensor(x_init, requires_grad=False)
m = Tensor(m_init, requires_grad=False)
W = Tensor(W_init, requires_grad=True)
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is not None
assert W.grad is not None
def test_dropout(self):
with Tensor.train():
n, rate = 1_000_000, 0.1
w = Tensor.ones(n).dropout(rate)
non_zeros = np.count_nonzero(w.numpy())
expected = n * (1 - rate)
np.testing.assert_allclose(non_zeros, expected, rtol=2e-3)
def test_jacobian(self):
W = np.random.RandomState(42069).random((10, 5)).astype(np.float32)
x = np.random.RandomState(69420).random((1, 10)).astype(np.float32)
torch_x = torch.tensor(x, requires_grad=True)
torch_W = torch.tensor(W, requires_grad=True)
torch_func = lambda x: torch.nn.functional.log_softmax(x.matmul(torch_W).relu(), dim=1)
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
tiny_x = Tensor(x, requires_grad=True)
tiny_W = Tensor(W, requires_grad=True)
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
J = jacobian(tiny_func, tiny_x)
NJ = numerical_jacobian(tiny_func, tiny_x)
np.testing.assert_allclose(PJ, J, atol = 1e-5)
np.testing.assert_allclose(PJ, NJ, atol = 1e-3)
def test_gradcheck(self):
W = np.random.RandomState(1337).random((10, 5)).astype(np.float32)
x = np.random.RandomState(7331).random((1, 10)).astype(np.float32)
tiny_x = Tensor(x, requires_grad=True)
tiny_W = Tensor(W, requires_grad=True)
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
self.assertTrue(gradcheck(tiny_func, tiny_x, eps = 1e-3))
# coarse approx. since a "big" eps and the non-linearities of the model
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 1e-5))
def test_random_fns_are_deterministic_with_seed(self):
for random_fn in [Tensor.randn, Tensor.normal, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform, Tensor.kaiming_normal]:
with self.subTest(msg=f"Tensor.{random_fn.__name__}"):
Tensor.manual_seed(1337)
a = random_fn(10,10).realize()
Tensor.manual_seed(1337)
b = random_fn(10,10).realize()
np.testing.assert_allclose(a.numpy(), b.numpy())
def test_randn_isnt_inf_on_zero(self):
# simulate failure case of rand handing a zero to randn
original_rand, Tensor.rand = Tensor.rand, Tensor.zeros
try: self.assertNotIn(np.inf, Tensor.randn(16).numpy())
except: raise
finally: Tensor.rand = original_rand
def test_zeros_like_has_same_dtype(self):
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
a = Tensor([1, 2, 3], dtype=datatype)
b = Tensor.zeros_like(a)
assert a.dtype == b.dtype, f"a.dtype and b.dtype should be {datatype}"
assert a.shape == b.shape, f"shape mismatch (Tensor.zeros_like){a.shape} != (torch){b.shape}"
a = Tensor([1, 2, 3])
b = Tensor.zeros_like(a, dtype=dtypes.int8)
assert a.dtype != b.dtype and a.dtype == dtypes.float32 and b.dtype == dtypes.int8, "a.dtype should be float and b.dtype should be char"
assert a.shape == b.shape, f"shape mismatch (Tensor.zeros_like){a.shape} != (torch){b.shape}"
def test_ones_like_has_same_dtype_and_shape(self):
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
a = Tensor([1, 2, 3], dtype=datatype)
b = Tensor.ones_like(a)
assert a.dtype == b.dtype, f"a.dtype and b.dtype should be {datatype}"
assert a.shape == b.shape, f"shape mismatch (Tensor.ones_like){a.shape} != (torch){b.shape}"
a = Tensor([1, 2, 3])
b = Tensor.ones_like(a, dtype=dtypes.int8)
assert a.dtype != b.dtype and a.dtype == dtypes.float32 and b.dtype == dtypes.int8, "a.dtype should be float and b.dtype should be char"
assert a.shape == b.shape, f"shape mismatch (Tensor.ones_like){a.shape} != (torch){b.shape}"
def test_ndim(self):
assert Tensor.randn(1).ndim == 1
assert Tensor.randn(2,2,2).ndim == 3
assert Tensor.randn(1,1,1,1,1,1).ndim == 6
def test_argfix(self):
self.assertEqual(Tensor.zeros().shape, ())
self.assertEqual(Tensor.ones().shape, ())
self.assertEqual(Tensor.zeros([]).shape, ())
self.assertEqual(Tensor.ones([]).shape, ())
self.assertEqual(Tensor.zeros(tuple()).shape, ())
self.assertEqual(Tensor.ones(tuple()).shape, ())
self.assertEqual(Tensor.zeros(1).shape, (1,))
self.assertEqual(Tensor.ones(1).shape, (1,))
self.assertEqual(Tensor.zeros(1,10,20).shape, (1,10,20))
self.assertEqual(Tensor.ones(1,10,20).shape, (1,10,20))
self.assertEqual(Tensor.zeros([1]).shape, (1,))
self.assertEqual(Tensor.ones([1]).shape, (1,))
self.assertEqual(Tensor.zeros([10,20,40]).shape, (10,20,40))
self.assertEqual(Tensor.ones([10,20,40]).shape, (10,20,40))
def test_numel(self):
assert Tensor.randn(10, 10).numel() == 100
assert Tensor.randn(1,2,5).numel() == 10
assert Tensor.randn(1,1,1,1,1,1).numel() == 1
assert Tensor([]).numel() == 0
# assert Tensor.randn(1,0,2,5) == 0 # TODO: fix empty tensors
def test_element_size(self):
for _, dtype in dtypes.fields().items():
assert dtype.itemsize == Tensor.randn(3, dtype=dtype).element_size(), f"Tensor.element_size() not matching Tensor.dtype.itemsize for {dtype}"
def test_deepwalk_ctx_check(self):
layer = Tensor.uniform(1, 1, requires_grad=True)
x = Tensor.randn(1, 1, 1)
x.dot(layer).mean().backward()
x = Tensor.randn(1, 1, 1)
x.dot(layer).mean().backward()
def test_zerosized_tensors(self):
Tensor([]).realize()
Tensor([]).numpy()
def test_tensor_ndarray_dtype(self):
arr = np.array([1]) # where dtype is implicitly int64
assert Tensor(arr).dtype == dtypes.int64
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32 # check if ndarray correctly casts to Tensor dtype
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64 # check that it works for something else
def test_tensor_list_dtype(self):
arr = [1]
assert Tensor(arr).dtype == Tensor.default_type
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
def test_tensor_copy(self):
x = copy.deepcopy(Tensor.ones((3,3,3)))
np.testing.assert_allclose(x.numpy(), np.ones((3,3,3)))
def test_copy_from_disk(self):
t = Tensor.randn(30, device="CPU").to(f"disk:{temp('test_copy_from_disk')}")
a = t[10:20]
dev = a.to(Device.DEFAULT)
np.testing.assert_allclose(a.numpy(), dev.numpy())
# Regression test for https://github.com/tinygrad/tinygrad/issues/1751
def test_copy_from_numpy_unaligned(self):
# 2**15 is the minimum for repro
arr = np.random.randn(2**15).astype(dtypes.float.np)
fn = temp('test_copy_from_numpy_unaligned')
with open(fn, 'wb') as f: f.write(b't' + arr.tobytes())
with open(fn, "a+b") as f: memview = memoryview(mmap.mmap(f.fileno(), arr.nbytes + 1))
ua_arr = np.frombuffer(memview[1:], dtype=arr.dtype, count=arr.shape[0])
np.testing.assert_allclose(arr, ua_arr)
assert not ua_arr.flags.aligned
# force device copy - to() is opt'd away - Tensor(dev)/1 is ignored
np.testing.assert_allclose(ua_arr, (Tensor(ua_arr)/Tensor(1)).numpy())
if __name__ == '__main__':
unittest.main()