ods777/selfdrive/car/__init__.py

314 lines
11 KiB
Python

# functions common among cars
from collections import namedtuple
from dataclasses import dataclass
from enum import IntFlag, ReprEnum, EnumType
from dataclasses import replace
import capnp
from cereal import car
from openpilot.common.numpy_fast import clip, interp
from openpilot.common.utils import Freezable
from openpilot.selfdrive.car.docs_definitions import CarDocs
# kg of standard extra cargo to count for drive, gas, etc...
STD_CARGO_KG = 136.
ButtonType = car.CarState.ButtonEvent.Type
EventName = car.CarEvent.EventName
AngleRateLimit = namedtuple('AngleRateLimit', ['speed_bp', 'angle_v'])
def apply_hysteresis(val: float, val_steady: float, hyst_gap: float) -> float:
if val > val_steady + hyst_gap:
val_steady = val - hyst_gap
elif val < val_steady - hyst_gap:
val_steady = val + hyst_gap
return val_steady
def create_button_events(cur_btn: int, prev_btn: int, buttons_dict: dict[int, capnp.lib.capnp._EnumModule],
unpressed_btn: int = 0) -> list[capnp.lib.capnp._DynamicStructBuilder]:
events: list[capnp.lib.capnp._DynamicStructBuilder] = []
if cur_btn == prev_btn:
return events
# Add events for button presses, multiple when a button switches without going to unpressed
for pressed, btn in ((False, prev_btn), (True, cur_btn)):
if btn != unpressed_btn:
events.append(car.CarState.ButtonEvent(pressed=pressed,
type=buttons_dict.get(btn, ButtonType.unknown)))
return events
def gen_empty_fingerprint():
return {i: {} for i in range(8)}
# these params were derived for the Civic and used to calculate params for other cars
class VehicleDynamicsParams:
MASS = 1326. + STD_CARGO_KG
WHEELBASE = 2.70
CENTER_TO_FRONT = WHEELBASE * 0.4
CENTER_TO_REAR = WHEELBASE - CENTER_TO_FRONT
ROTATIONAL_INERTIA = 2500
TIRE_STIFFNESS_FRONT = 192150
TIRE_STIFFNESS_REAR = 202500
# TODO: get actual value, for now starting with reasonable value for
# civic and scaling by mass and wheelbase
def scale_rot_inertia(mass, wheelbase):
return VehicleDynamicsParams.ROTATIONAL_INERTIA * mass * wheelbase ** 2 / (VehicleDynamicsParams.MASS * VehicleDynamicsParams.WHEELBASE ** 2)
# TODO: start from empirically derived lateral slip stiffness for the civic and scale by
# mass and CG position, so all cars will have approximately similar dyn behaviors
def scale_tire_stiffness(mass, wheelbase, center_to_front, tire_stiffness_factor):
center_to_rear = wheelbase - center_to_front
tire_stiffness_front = (VehicleDynamicsParams.TIRE_STIFFNESS_FRONT * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \
(center_to_rear / wheelbase) / (VehicleDynamicsParams.CENTER_TO_REAR / VehicleDynamicsParams.WHEELBASE)
tire_stiffness_rear = (VehicleDynamicsParams.TIRE_STIFFNESS_REAR * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \
(center_to_front / wheelbase) / (VehicleDynamicsParams.CENTER_TO_FRONT / VehicleDynamicsParams.WHEELBASE)
return tire_stiffness_front, tire_stiffness_rear
DbcDict = dict[str, str]
def dbc_dict(pt_dbc, radar_dbc, chassis_dbc=None, body_dbc=None) -> DbcDict:
return {'pt': pt_dbc, 'radar': radar_dbc, 'chassis': chassis_dbc, 'body': body_dbc}
def apply_driver_steer_torque_limits(apply_torque, apply_torque_last, driver_torque, LIMITS):
# limits due to driver torque
driver_max_torque = LIMITS.STEER_MAX + (LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
driver_min_torque = -LIMITS.STEER_MAX + (-LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
max_steer_allowed = max(min(LIMITS.STEER_MAX, driver_max_torque), 0)
min_steer_allowed = min(max(-LIMITS.STEER_MAX, driver_min_torque), 0)
apply_torque = clip(apply_torque, min_steer_allowed, max_steer_allowed)
# slow rate if steer torque increases in magnitude
if apply_torque_last > 0:
apply_torque = clip(apply_torque, max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
apply_torque_last + LIMITS.STEER_DELTA_UP)
else:
apply_torque = clip(apply_torque, apply_torque_last - LIMITS.STEER_DELTA_UP,
min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
return int(round(float(apply_torque)))
def apply_dist_to_meas_limits(val, val_last, val_meas,
STEER_DELTA_UP, STEER_DELTA_DOWN,
STEER_ERROR_MAX, STEER_MAX):
# limits due to comparison of commanded val VS measured val (torque/angle/curvature)
max_lim = min(max(val_meas + STEER_ERROR_MAX, STEER_ERROR_MAX), STEER_MAX)
min_lim = max(min(val_meas - STEER_ERROR_MAX, -STEER_ERROR_MAX), -STEER_MAX)
val = clip(val, min_lim, max_lim)
# slow rate if val increases in magnitude
if val_last > 0:
val = clip(val,
max(val_last - STEER_DELTA_DOWN, -STEER_DELTA_UP),
val_last + STEER_DELTA_UP)
else:
val = clip(val,
val_last - STEER_DELTA_UP,
min(val_last + STEER_DELTA_DOWN, STEER_DELTA_UP))
return float(val)
def apply_meas_steer_torque_limits(apply_torque, apply_torque_last, motor_torque, LIMITS):
return int(round(apply_dist_to_meas_limits(apply_torque, apply_torque_last, motor_torque,
LIMITS.STEER_DELTA_UP, LIMITS.STEER_DELTA_DOWN,
LIMITS.STEER_ERROR_MAX, LIMITS.STEER_MAX)))
def apply_std_steer_angle_limits(apply_angle, apply_angle_last, v_ego, LIMITS):
# pick angle rate limits based on wind up/down
steer_up = apply_angle_last * apply_angle >= 0. and abs(apply_angle) > abs(apply_angle_last)
rate_limits = LIMITS.ANGLE_RATE_LIMIT_UP if steer_up else LIMITS.ANGLE_RATE_LIMIT_DOWN
angle_rate_lim = interp(v_ego, rate_limits.speed_bp, rate_limits.angle_v)
return clip(apply_angle, apply_angle_last - angle_rate_lim, apply_angle_last + angle_rate_lim)
def common_fault_avoidance(fault_condition: bool, request: bool, above_limit_frames: int,
max_above_limit_frames: int, max_mismatching_frames: int = 1):
"""
Several cars have the ability to work around their EPS limits by cutting the
request bit of their LKAS message after a certain number of frames above the limit.
"""
# Count up to max_above_limit_frames, at which point we need to cut the request for above_limit_frames to avoid a fault
if request and fault_condition:
above_limit_frames += 1
else:
above_limit_frames = 0
# Once we cut the request bit, count additionally to max_mismatching_frames before setting the request bit high again.
# Some brands do not respect our workaround without multiple messages on the bus, for example
if above_limit_frames > max_above_limit_frames:
request = False
if above_limit_frames >= max_above_limit_frames + max_mismatching_frames:
above_limit_frames = 0
return above_limit_frames, request
def crc8_pedal(data):
crc = 0xFF # standard init value
poly = 0xD5 # standard crc8: x8+x7+x6+x4+x2+1
size = len(data)
for i in range(size - 1, -1, -1):
crc ^= data[i]
for _ in range(8):
if ((crc & 0x80) != 0):
crc = ((crc << 1) ^ poly) & 0xFF
else:
crc <<= 1
return crc
def create_gas_interceptor_command(packer, gas_amount, idx):
# Common gas pedal msg generator
enable = gas_amount > 0.001
values = {
"ENABLE": enable,
"COUNTER_PEDAL": idx & 0xF,
}
if enable:
values["GAS_COMMAND"] = gas_amount * 255.
values["GAS_COMMAND2"] = gas_amount * 255.
dat = packer.make_can_msg("GAS_COMMAND", 0, values)[2]
checksum = crc8_pedal(dat[:-1])
values["CHECKSUM_PEDAL"] = checksum
return packer.make_can_msg("GAS_COMMAND", 0, values)
def make_can_msg(addr, dat, bus):
return [addr, 0, dat, bus]
def get_safety_config(safety_model, safety_param = None):
ret = car.CarParams.SafetyConfig.new_message()
ret.safetyModel = safety_model
if safety_param is not None:
ret.safetyParam = safety_param
return ret
class CanBusBase:
offset: int
def __init__(self, CP, fingerprint: dict[int, dict[int, int]] | None) -> None:
if CP is None:
assert fingerprint is not None
num = max([k for k, v in fingerprint.items() if len(v)], default=0) // 4 + 1
else:
num = len(CP.safetyConfigs)
self.offset = 4 * (num - 1)
class CanSignalRateCalculator:
"""
Calculates the instantaneous rate of a CAN signal by using the counter
variable and the known frequency of the CAN message that contains it.
"""
def __init__(self, frequency):
self.frequency = frequency
self.previous_counter = 0
self.previous_value = 0
self.rate = 0
def update(self, current_value, current_counter):
if current_counter != self.previous_counter:
self.rate = (current_value - self.previous_value) * self.frequency
self.previous_counter = current_counter
self.previous_value = current_value
return self.rate
@dataclass(frozen=True, kw_only=True)
class CarSpecs:
mass: float # kg, curb weight
wheelbase: float # meters
steerRatio: float
centerToFrontRatio: float = 0.5
minSteerSpeed: float = 0.0 # m/s
minEnableSpeed: float = -1.0 # m/s
tireStiffnessFactor: float = 1.0
def override(self, **kwargs):
return replace(self, **kwargs)
@dataclass(order=True)
class PlatformConfig(Freezable):
car_docs: list[CarDocs]
specs: CarSpecs
dbc_dict: DbcDict
flags: int = 0
platform_str: str | None = None
def __hash__(self) -> int:
return hash(self.platform_str)
def override(self, **kwargs):
return replace(self, **kwargs)
def init(self):
pass
def __post_init__(self):
self.init()
class PlatformsType(EnumType):
def __new__(metacls, cls, bases, classdict, *, boundary=None, _simple=False, **kwds):
for key in classdict._member_names.keys():
cfg: PlatformConfig = classdict[key]
cfg.platform_str = key
cfg.freeze()
return super().__new__(metacls, cls, bases, classdict, boundary=boundary, _simple=_simple, **kwds)
class Platforms(str, ReprEnum, metaclass=PlatformsType):
config: PlatformConfig
def __new__(cls, platform_config: PlatformConfig):
member = str.__new__(cls, platform_config.platform_str)
member.config = platform_config
member._value_ = platform_config.platform_str
return member
def __repr__(self):
return f"<{self.__class__.__name__}.{self.name}>"
@classmethod
def create_dbc_map(cls) -> dict[str, DbcDict]:
return {p: p.config.dbc_dict for p in cls}
@classmethod
def with_flags(cls, flags: IntFlag) -> set['Platforms']:
return {p for p in cls if p.config.flags & flags}