ods/panda/board/flasher.h

318 lines
7.9 KiB
C

// flasher state variables
uint32_t *prog_ptr = NULL;
bool unlocked = false;
void spi_init(void);
#ifdef uart_ring
void debug_ring_callback(uart_ring *ring) {}
#endif
int comms_control_handler(ControlPacket_t *req, uint8_t *resp) {
int resp_len = 0;
// flasher machine
memset(resp, 0, 4);
memcpy(resp+4, "\xde\xad\xd0\x0d", 4);
resp[0] = 0xff;
resp[2] = req->request;
resp[3] = ~req->request;
*((uint32_t **)&resp[8]) = prog_ptr;
resp_len = 0xc;
int sec;
switch (req->request) {
// **** 0xb0: flasher echo
case 0xb0:
resp[1] = 0xff;
break;
// **** 0xb1: unlock flash
case 0xb1:
if (flash_is_locked()) {
flash_unlock();
resp[1] = 0xff;
}
current_board->set_led(LED_GREEN, 1);
unlocked = true;
prog_ptr = (uint32_t *)APP_START_ADDRESS;
break;
// **** 0xb2: erase sector
case 0xb2:
sec = req->param1;
if (flash_erase_sector(sec, unlocked)) {
resp[1] = 0xff;
}
break;
// **** 0xc1: get hardware type
case 0xc1:
resp[0] = hw_type;
resp_len = 1;
break;
// **** 0xc3: fetch MCU UID
case 0xc3:
#ifdef UID_BASE
(void)memcpy(resp, ((uint8_t *)UID_BASE), 12);
resp_len = 12;
#endif
break;
// **** 0xd0: fetch serial number
case 0xd0:
#ifndef STM32F2
// addresses are OTP
if (req->param1 == 1) {
memcpy(resp, (void *)DEVICE_SERIAL_NUMBER_ADDRESS, 0x10);
resp_len = 0x10;
} else {
get_provision_chunk(resp);
resp_len = PROVISION_CHUNK_LEN;
}
#endif
break;
// **** 0xd1: enter bootloader mode
case 0xd1:
// this allows reflashing of the bootstub
switch (req->param1) {
case 0:
print("-> entering bootloader\n");
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
break;
case 1:
print("-> entering softloader\n");
enter_bootloader_mode = ENTER_SOFTLOADER_MAGIC;
NVIC_SystemReset();
break;
}
break;
// **** 0xd6: get version
case 0xd6:
COMPILE_TIME_ASSERT(sizeof(gitversion) <= USBPACKET_MAX_SIZE);
memcpy(resp, gitversion, sizeof(gitversion));
resp_len = sizeof(gitversion);
break;
// **** 0xd8: reset ST
case 0xd8:
flush_write_buffer();
NVIC_SystemReset();
break;
}
return resp_len;
}
void comms_can_write(const uint8_t *data, uint32_t len) {
UNUSED(data);
UNUSED(len);
}
int comms_can_read(uint8_t *data, uint32_t max_len) {
UNUSED(data);
UNUSED(max_len);
return 0;
}
void refresh_can_tx_slots_available(void) {}
void comms_endpoint2_write(const uint8_t *data, uint32_t len) {
current_board->set_led(LED_RED, 0);
for (uint32_t i = 0; i < len/4; i++) {
flash_write_word(prog_ptr, *(uint32_t*)(data+(i*4)));
//*(uint64_t*)(&spi_tx_buf[0x30+(i*4)]) = *prog_ptr;
prog_ptr++;
}
current_board->set_led(LED_RED, 1);
}
int spi_cb_rx(uint8_t *data, int len, uint8_t *data_out) {
UNUSED(len);
ControlPacket_t control_req;
int resp_len = 0;
switch (data[0]) {
case 0:
// control transfer
control_req.request = ((USB_Setup_TypeDef *)(data+4))->b.bRequest;
control_req.param1 = ((USB_Setup_TypeDef *)(data+4))->b.wValue.w;
control_req.param2 = ((USB_Setup_TypeDef *)(data+4))->b.wIndex.w;
control_req.length = ((USB_Setup_TypeDef *)(data+4))->b.wLength.w;
resp_len = comms_control_handler(&control_req, data_out);
break;
case 2:
// ep 2, flash!
comms_endpoint2_write(data+4, data[2]);
break;
}
return resp_len;
}
#ifdef PEDAL
#include "stm32fx/llbxcan.h"
#define CANx CAN1
#define CAN_BL_INPUT 0x1
#define CAN_BL_OUTPUT 0x2
void CAN1_TX_IRQ_Handler(void) {
// clear interrupt
CANx->TSR |= CAN_TSR_RQCP0;
}
#define ISOTP_BUF_SIZE 0x110
uint8_t isotp_buf[ISOTP_BUF_SIZE];
uint8_t *isotp_buf_ptr = NULL;
int isotp_buf_remain = 0;
uint8_t isotp_buf_out[ISOTP_BUF_SIZE];
uint8_t *isotp_buf_out_ptr = NULL;
int isotp_buf_out_remain = 0;
int isotp_buf_out_idx = 0;
void bl_can_send(uint8_t *odat) {
// wait for send
while (!(CANx->TSR & CAN_TSR_TME0));
// send continue
CANx->sTxMailBox[0].TDLR = ((uint32_t*)odat)[0];
CANx->sTxMailBox[0].TDHR = ((uint32_t*)odat)[1];
CANx->sTxMailBox[0].TDTR = 8;
CANx->sTxMailBox[0].TIR = (CAN_BL_OUTPUT << 21) | 1;
}
void CAN1_RX0_IRQ_Handler(void) {
while (CANx->RF0R & CAN_RF0R_FMP0) {
if ((CANx->sFIFOMailBox[0].RIR>>21) == CAN_BL_INPUT) {
uint8_t dat[8];
for (int i = 0; i < 8; i++) {
dat[i] = GET_MAILBOX_BYTE(&CANx->sFIFOMailBox[0], i);
}
uint8_t odat[8];
uint8_t type = dat[0] & 0xF0;
if (type == 0x30) {
// continue
while (isotp_buf_out_remain > 0) {
// wait for send
while (!(CANx->TSR & CAN_TSR_TME0));
odat[0] = 0x20 | isotp_buf_out_idx;
memcpy(odat+1, isotp_buf_out_ptr, 7);
isotp_buf_out_remain -= 7;
isotp_buf_out_ptr += 7;
isotp_buf_out_idx++;
bl_can_send(odat);
}
} else if (type == 0x20) {
if (isotp_buf_remain > 0) {
memcpy(isotp_buf_ptr, dat+1, 7);
isotp_buf_ptr += 7;
isotp_buf_remain -= 7;
}
if (isotp_buf_remain <= 0) {
int len = isotp_buf_ptr - isotp_buf + isotp_buf_remain;
// call the function
memset(isotp_buf_out, 0, ISOTP_BUF_SIZE);
isotp_buf_out_remain = spi_cb_rx(isotp_buf, len, isotp_buf_out);
isotp_buf_out_ptr = isotp_buf_out;
isotp_buf_out_idx = 0;
// send initial
if (isotp_buf_out_remain <= 7) {
odat[0] = isotp_buf_out_remain;
memcpy(odat+1, isotp_buf_out_ptr, isotp_buf_out_remain);
} else {
odat[0] = 0x10 | (isotp_buf_out_remain>>8);
odat[1] = isotp_buf_out_remain & 0xFF;
memcpy(odat+2, isotp_buf_out_ptr, 6);
isotp_buf_out_remain -= 6;
isotp_buf_out_ptr += 6;
isotp_buf_out_idx++;
}
bl_can_send(odat);
}
} else if (type == 0x10) {
int len = ((dat[0]&0xF)<<8) | dat[1];
// setup buffer
isotp_buf_ptr = isotp_buf;
memcpy(isotp_buf_ptr, dat+2, 6);
if (len < (ISOTP_BUF_SIZE-0x10)) {
isotp_buf_ptr += 6;
isotp_buf_remain = len-6;
}
memset(odat, 0, 8);
odat[0] = 0x30;
bl_can_send(odat);
}
}
// next
CANx->RF0R |= CAN_RF0R_RFOM0;
}
}
void CAN1_SCE_IRQ_Handler(void) {
llcan_clear_send(CANx);
}
#endif
void soft_flasher_start(void) {
#ifdef PEDAL
REGISTER_INTERRUPT(CAN1_TX_IRQn, CAN1_TX_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1)
REGISTER_INTERRUPT(CAN1_RX0_IRQn, CAN1_RX0_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1)
REGISTER_INTERRUPT(CAN1_SCE_IRQn, CAN1_SCE_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1)
#endif
print("\n\n\n************************ FLASHER START ************************\n");
enter_bootloader_mode = 0;
flasher_peripherals_init();
// pedal has the canloader
#ifdef PEDAL
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
// B8,B9: CAN 1
set_gpio_alternate(GPIOB, 8, GPIO_AF9_CAN1);
set_gpio_alternate(GPIOB, 9, GPIO_AF9_CAN1);
current_board->enable_can_transceiver(1, true);
// init can
llcan_set_speed(CANx, 5000, false, false);
llcan_init(CANx);
#endif
gpio_usart2_init();
gpio_usb_init();
// enable USB
usb_init();
// enable SPI
if (current_board->has_spi) {
gpio_spi_init();
spi_init();
}
// green LED on for flashing
current_board->set_led(LED_GREEN, 1);
enable_interrupts();
for (;;) {
// blink the green LED fast
current_board->set_led(LED_GREEN, 0);
delay(500000);
current_board->set_led(LED_GREEN, 1);
delay(500000);
}
}