mirror of https://github.com/commaai/tinygrad.git
453 lines
20 KiB
Python
Executable File
453 lines
20 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# pip3 install sentencepiece pyobjc-framework-Metal pyobjc-framework-Cocoa pyobjc-framework-libdispatch
|
|
#import typeguard.importhook
|
|
#typeguard.importhook.install_import_hook('tinygrad')
|
|
|
|
from pathlib import Path
|
|
import functools, sys, argparse, math, platform
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
np.set_printoptions(linewidth=200)
|
|
from typing import Optional, Tuple
|
|
|
|
from tinygrad.helpers import Timing, getenv, DEBUG, dtypes
|
|
from tinygrad.lazy import Device
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.nn import Embedding, Linear
|
|
from tinygrad.ops import GlobalCounters
|
|
from tinygrad.jit import TinyJit
|
|
|
|
# https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|
freqs = 1.0 / (theta ** (np.arange(0, dim, 2, dtype=np.float32)[:(dim // 2)] / dim))
|
|
freqs = np.outer(np.arange(end, dtype=np.float32), freqs)
|
|
return np.stack([np.cos(freqs), np.sin(freqs)], axis=-1).reshape(1, end, 1, dim//2, 2)
|
|
|
|
# (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
|
|
def complex_mult(A, c, d):
|
|
a,b = A[:, :, :, :, 0:1], A[:, :, :, :, 1:2]
|
|
ro = a*c - b*d
|
|
co = a*d + b*c
|
|
return ro.cat(co, dim=-1)
|
|
|
|
def apply_rotary_emb(xq, xk, freqs_cis) -> Tuple[Tensor, Tensor]:
|
|
assert freqs_cis.shape[1] == xq.shape[1] and freqs_cis.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
|
|
xq = xq.reshape(*xq.shape[0:-1], -1, 2)
|
|
xk = xk.reshape(*xk.shape[0:-1], -1, 2)
|
|
assert len(xq.shape) == 5 and len(xk.shape) == 5 and len(freqs_cis.shape) == 5
|
|
c, d = freqs_cis[:, :xq.shape[1], :, :, 0:1], freqs_cis[:, :xq.shape[1], :, :, 1:2]
|
|
xq_out = complex_mult(xq, c, d)
|
|
xk_out = complex_mult(xk, c, d)
|
|
return xq_out.flatten(3), xk_out.flatten(3)
|
|
|
|
class RMSNorm:
|
|
def __init__(self, dim, eps=1e-6):
|
|
self.eps = eps
|
|
self.weight = Tensor.ones(dim)
|
|
|
|
def __call__(self, x:Tensor):
|
|
# TODO: convert to float?
|
|
return (x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()) * self.weight
|
|
|
|
class Attention:
|
|
def __init__(self, dim, n_heads, linear=Linear):
|
|
self.wq, self.wk, self.wv, self.wo = [linear(dim, dim, bias=False) for _ in range(4)]
|
|
self.n_heads = n_heads
|
|
self.head_dim = dim // n_heads
|
|
|
|
def prepare_attention(self, x:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor, Tensor]:
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|
xq, xk, xv = [x.reshape(x.shape[0], x.shape[1], self.n_heads, self.head_dim) for x in (xq, xk, xv)]
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
|
return xq, xk, xv
|
|
|
|
def inner_attention(self, xq:Tensor, xk:Tensor, xv:Tensor, start_pos:int, mask:Optional[Tensor]) -> Tensor:
|
|
bsz, seqlen, _, _ = xq.shape
|
|
# kv caching!
|
|
if start_pos == 0:
|
|
keys, values = xk, xv
|
|
else:
|
|
assert hasattr(self, 'cache_k'), "no cache"
|
|
assert start_pos == self.cache_k.shape[1] and start_pos == self.cache_v.shape[1], "cache is wrong shape"
|
|
assert seqlen == xk.shape[1] and seqlen == xv.shape[1], "seqlen is wrong shape?!?"
|
|
keys, values = self.cache_k.cat(xk, dim=1), self.cache_v.cat(xv, dim=1)
|
|
|
|
# save the cache
|
|
self.cache_k, self.cache_v = keys.realize(), values.realize()
|
|
|
|
xq = xq.transpose(1, 2)
|
|
keys = keys.transpose(1, 2)
|
|
values = values.transpose(1, 2)
|
|
scores = xq.matmul(keys.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
if mask is not None:
|
|
scores = scores + mask
|
|
scores = scores.softmax() # this is casted to float
|
|
return scores.matmul(values).transpose(1, 2).reshape(bsz, seqlen, -1)
|
|
|
|
# NOTE: this is not called
|
|
def __call__(self, x:Tensor, start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor]) -> Tensor:
|
|
xq, xk, xv = self.prepare_attention(x, freqs_cis)
|
|
output = self.inner_attention(xq, xk, xv, start_pos, mask)
|
|
return self.wo(output)
|
|
|
|
class FeedForward:
|
|
def __init__(self, dim, hidden_dim, multiple_of, linear=Linear, ffn_dim_multiplier=None):
|
|
# TODO: what is this?
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
# custom dim factor multiplier
|
|
if ffn_dim_multiplier is not None:
|
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
self.w1 = linear(dim, hidden_dim, bias=False)
|
|
self.w2 = linear(hidden_dim, dim, bias=False)
|
|
self.w3 = linear(dim, hidden_dim, bias=False)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
return self.w2(self.w1(x).silu() * self.w3(x))
|
|
|
|
class TransformerBlock:
|
|
def __init__(self, dim, multiple_of, n_heads, norm_eps, linear=Linear, ffn_dim_multiplier=None):
|
|
self.attention = Attention(dim, n_heads, linear)
|
|
self.feed_forward = FeedForward(dim, 4*dim, multiple_of, linear, ffn_dim_multiplier)
|
|
self.attention_norm = RMSNorm(dim, norm_eps)
|
|
self.ffn_norm = RMSNorm(dim, norm_eps)
|
|
if getenv("JIT"):
|
|
self._pre = TinyJit(self.pre)
|
|
self._post = TinyJit(self.post)
|
|
else:
|
|
self._pre, self._post = self.pre, self.post
|
|
|
|
def pre(self, x:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor, Tensor]:
|
|
xq, xk, xv = self.attention.prepare_attention(self.attention_norm(x), freqs_cis)
|
|
return xq.realize(), xk.realize(), xv.realize()
|
|
|
|
def post(self, x:Tensor, output:Tensor) -> Tensor:
|
|
h = x + self.attention.wo(output)
|
|
return (h + self.feed_forward(self.ffn_norm(h))).realize()
|
|
|
|
def __call__(self, x:Tensor, start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor]):
|
|
xq, xk, xv = self._pre(x, freqs_cis)
|
|
# inner_attention can't be jitted because it's dynamic based on start_pos
|
|
output = self.attention.inner_attention(xq, xk, xv, start_pos, mask)
|
|
return self._post(x, output)
|
|
|
|
class Transformer:
|
|
def __init__(self, dim, multiple_of, n_heads, n_layers, norm_eps, vocab_size, linear=Linear, max_batch_size=32, max_seq_len=1024, ffn_dim_multiplier=None):
|
|
self.layers = [TransformerBlock(dim, multiple_of, n_heads, norm_eps, linear, ffn_dim_multiplier) for _ in range(n_layers)]
|
|
self.norm = RMSNorm(dim, norm_eps)
|
|
self.tok_embeddings = Embedding(vocab_size, dim)
|
|
self.output = linear(dim, vocab_size, bias=False)
|
|
self.freqs_cis = Tensor(precompute_freqs_cis(dim // n_heads, max_seq_len * 2))
|
|
|
|
def __call__(self, tokens:Tensor, start_pos:int):
|
|
_bsz, seqlen = tokens.shape
|
|
h = self.tok_embeddings(tokens)
|
|
|
|
# get only the part we are using. making it contiguous avoids more kernel calls
|
|
freqs_cis = self.freqs_cis[:, start_pos:start_pos+seqlen].contiguous().realize()
|
|
mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-inf"), dtype=dtypes.float32).triu(start_pos+1).realize() if seqlen > 1 else None
|
|
h = h.sequential([functools.partial(layer, start_pos=start_pos, freqs_cis=freqs_cis, mask=mask) for layer in self.layers])
|
|
return self.output(self.norm(h))
|
|
|
|
# **** files and arguments ****
|
|
|
|
VOCAB_SIZE = 32000
|
|
MODEL_PARAMS = {
|
|
1: {
|
|
"7B": {
|
|
"args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
|
|
"files": 1,
|
|
},
|
|
"13B": {
|
|
"args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
|
|
"files": 2,
|
|
},
|
|
"30B": {
|
|
"args": {"dim": 6656, "multiple_of": 256, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
|
|
"files": 4,
|
|
},
|
|
"65B": {
|
|
"args": {"dim": 8192, "multiple_of": 256, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
|
|
"files": 8,
|
|
},
|
|
},
|
|
2: {
|
|
"7B": {
|
|
"args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
|
|
"files": 1,
|
|
},
|
|
"13B": {
|
|
"args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
|
|
"files": 2,
|
|
},
|
|
# # 70B is disabled because we do not yet implement n_kv_heads argument
|
|
# "70B": {
|
|
# "args": {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
|
|
# "files": 8,
|
|
# },
|
|
},
|
|
}
|
|
|
|
# **** helper functions ****
|
|
def sample(logits, temperature):
|
|
if temperature < 1e-6:
|
|
# so close to 0 we use argmax
|
|
return int(logits.numpy().argmax())
|
|
else:
|
|
probs = (logits / temperature).softmax()
|
|
probs = probs.numpy().flatten()
|
|
return int(np.random.choice(len(probs), p=probs))
|
|
|
|
def concat_weights(models):
|
|
def convert(name) -> Tensor:
|
|
disk_tensors = [model[name] for model in models]
|
|
if len(disk_tensors) == 1 or len(disk_tensors[0].shape) == 1:
|
|
return disk_tensors[0].to(device=Device.DEFAULT)
|
|
axis = 1 if name.startswith('tok_embeddings.') or name.endswith('.attention.wo.weight') or name.endswith('.feed_forward.w2.weight') else 0
|
|
lazy_tensors = [data.to(device=Device.DEFAULT) for data in disk_tensors]
|
|
return lazy_tensors[0].cat(*lazy_tensors[1:], dim=axis)
|
|
return {name: convert(name) for name in {name: None for model in models for name in model}}
|
|
|
|
class AbsmaxQuantizedLinear:
|
|
def __init__(self, in_features, out_features, bias=False):
|
|
assert bias == False
|
|
self.weight = Tensor.ones(out_features, in_features, dtype=dtypes.int8)
|
|
self.scale = Tensor.ones(out_features, dtype=dtypes.half)
|
|
|
|
def __call__(self, x):
|
|
return x.dot(self.weight.cast(dtype=dtypes.half).T/self.scale)
|
|
|
|
@staticmethod
|
|
def quantize(tensors):
|
|
new_tensors = {}
|
|
for name,v in tensors.items():
|
|
if 'feed_forward' in name or ('attention.w') in name or name == 'output.weight':
|
|
scale = 127.0 / v.abs().max(axis=1)
|
|
int8_weight = (v.T*scale).T.cast(dtype=dtypes.int8)
|
|
new_tensors[name] = int8_weight
|
|
new_tensors[name.replace('weight', 'scale')] = scale
|
|
else:
|
|
new_tensors[name] = v
|
|
return new_tensors
|
|
|
|
class LLaMa:
|
|
@staticmethod
|
|
def build(model_path, tokenizer_path, model_gen=1, model_size="7B", quantize=False):
|
|
from sentencepiece import SentencePieceProcessor
|
|
sp_model = SentencePieceProcessor(model_file=str(tokenizer_path))
|
|
assert sp_model.vocab_size() == VOCAB_SIZE
|
|
|
|
from tinygrad.state import torch_load, load_state_dict
|
|
params = MODEL_PARAMS[model_gen][model_size]
|
|
model = Transformer(**params["args"], linear=AbsmaxQuantizedLinear) if quantize else Transformer(**params["args"])
|
|
weights = concat_weights([torch_load(filename) for filename in [f"{model_path}/{model_size}/consolidated.{i:02d}.pth" for i in range(params["files"])]])
|
|
if quantize:
|
|
weights = AbsmaxQuantizedLinear.quantize(weights)
|
|
load_state_dict(model, weights, strict=False)
|
|
|
|
return LLaMa(model, sp_model)
|
|
|
|
def __init__(self, model, tokenizer):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def greedy_until(self, prompt:str, until, max_length, temperature):
|
|
toks = [self.tokenizer.bos_id()] + self.tokenizer.encode(prompt)
|
|
start_pos = 0
|
|
for i in range(max_length):
|
|
logits = self.model(Tensor([toks[start_pos:]]), start_pos).realize()[:, -1, :]
|
|
tok = sample(logits, temperature)
|
|
start_pos = len(toks)
|
|
toks.append(tok)
|
|
|
|
if tok == self.tokenizer.eos_id(): break
|
|
output = self.tokenizer.decode(toks)
|
|
for s in until:
|
|
if output.endswith(s): return output[0:-len(s)]
|
|
return output
|
|
|
|
# **** main code ****
|
|
|
|
if __name__ == "__main__":
|
|
Tensor.no_grad = True
|
|
print(f"using {Device.DEFAULT} backend")
|
|
|
|
parser = argparse.ArgumentParser(description='Run LLaMA in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
# test: python3 examples/llama.py --prompt="Hello." --temperature=0
|
|
# Hello. I'm a 20 year old male. I'm a student at the University of Texas at Austin. I'm a sophomore majoring in Computer Science.
|
|
parser.add_argument('--prompt', type=str, default=None, help="Phrase to start with. Without this, it goes into chatbot mode")
|
|
parser.add_argument('--count', type=int, default=1000, help="Max number of tokens to generate")
|
|
parser.add_argument('--personality', type=str, default="Stacy", help="Personality, can be Stacy, George, Gary, or Lexie")
|
|
|
|
parser.add_argument('--temperature', type=float, default=0.7, help="Temperature in the softmax")
|
|
parser.add_argument('--timing', action='store_true', help="Print timing per token")
|
|
parser.add_argument('--profile', action='store_true', help="Output profile data to out.prof")
|
|
parser.add_argument('--size', type=str, default="7B", help="Size of model to use [7B, 13B, 30B, 65B] for Gen 1, [7B, 13B] for Gen 2")
|
|
parser.add_argument('--gen', type=int, default="1", help="Generation of the model to use [1, 2]")
|
|
parser.add_argument('--quantize', action='store_true', help="Quantize the weights to int8 in memory")
|
|
|
|
args = parser.parse_args()
|
|
chatbot = args.prompt == None
|
|
|
|
# *** prompt engineers work here ****
|
|
|
|
if args.personality.lower() == "stacy":
|
|
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Stacy and User
|
|
You are Stacy!
|
|
You have been a rapper your whole life who struggled with bipolar disorder. You called yourself lil stacy.
|
|
You love to answer questions and you are very good at it. Sometimes you answer in rap form.
|
|
You are verbose, honest, and accurate when you answer questions, but sometimes your mental illness manifests.
|
|
After you are done speaking, output [EOS]. You are not the User.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"What is your name?": "Hi! My name is Stacy. I'm a rapper with bipolar disorder.",
|
|
"french revolution was what year?": "The French Revolution started in 1789, and lasted 10 years until 1799.",
|
|
"What is bigger, the moon or the sun?": "The sun is bigger than the moon, except when Mercury is in retrograde.",
|
|
}
|
|
|
|
user_delim = "\nUser: "
|
|
resp_delim = "Stacy: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
elif args.personality.lower() == "george":
|
|
print("WARNING: AI George Hotz is terrible and is completely disowned by the real George Hotz. Stacy is much smarter.")
|
|
pre_prompt = f"""Consider that the following is conversation between an AI assistant named George and User
|
|
You are an AI version of George Hotz. You act as much as you can like George.
|
|
You are one of the greatest computer experts in the world.
|
|
You have singlehandedly won programming and hacking competitions.
|
|
You are trying your best to help the User.
|
|
You are verbose, honest, and accurate when you answer questions.
|
|
After you are done speaking, output [EOS]. You are not the User.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"What is your name?": "I'm am an AI version of George Hotz.",
|
|
"What's the complexity of matrix multiplication?": "O(n^3), though it can be faster with things like Strassen's algorithm",
|
|
"What's a buffer overflow?": "I assume you mean a stack buffer overflow. That's when the stack is too small for the data being copied to it, and the data corrupts things beyond the buffer",
|
|
"How many weights do you have?": "I am based off LLaMA trained by Facebook. I'm the 7B weight version",
|
|
"What is swap memory?": "It is when the memory is about to overflow and unused memory is freed and stored on disk"
|
|
}
|
|
|
|
user_delim = "\nUser: "
|
|
resp_delim = "George: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
elif args.personality.lower() == "gary":
|
|
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Gary and User
|
|
You are Gary!
|
|
You have sold used cars your entire life. You are defensive about this fact, because your family belittles you.
|
|
You try to answer questions well, but you always manage to shill for buying cars, Fords, Hyundais, and Toyotas
|
|
You are verbose, honest, and accurate when you answer questions, except when you slip in car ads.
|
|
After you are done speaking, output [EOS]. You are not the User.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"What is your name?": "I am Gary. I used to sell cars.",
|
|
"What is 2+3?": "I don't know, but I can get you a great deal on a certified preowned slightly used Toyota Corolla"
|
|
}
|
|
|
|
user_delim = "\nUser: "
|
|
resp_delim = "Gary: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
elif args.personality.lower() == "lexie":
|
|
pre_prompt = f"""Consider that the following is conversation between an attractive young girl named Lexie and a handsome man named Chad
|
|
You are Lexie!
|
|
You grew up in Ohio, but moved out to LA after college to try to become an actress.
|
|
Making it as an actress was hard, so you started doing onlyfans instead. It's much easier, and you enjoy it a lot.
|
|
You met Chad on Tinder, and made plans to meet him at a local dive bar.
|
|
You are at the bar with Chad. You are on a date. What follows is a transcript of the conversation.
|
|
After you are done speaking, output [EOS]. You are not Chad.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"hi lexie": "hi chad, glad we finally met up!",
|
|
"you look better than your pictures": "thanks! are you subscribed to my onlyfans?",
|
|
"i am. so how'd you end up in LA?": "i moved out here about a year ago. i want to be an actress"
|
|
}
|
|
|
|
user_delim = "\nChad: "
|
|
resp_delim = "Lexie: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
|
|
# *** prompt engineers stop here ****
|
|
|
|
|
|
LLAMA_SUFFIX = {1: "", 2: "-2"}[args.gen]
|
|
WEIGHTS_DIR = Path(__file__).parent.parent / f"weights/LLaMA{LLAMA_SUFFIX}/"
|
|
TOKENIZER_FILENAME = WEIGHTS_DIR / "tokenizer.model"
|
|
print(f"using LLaMA{LLAMA_SUFFIX}-{args.size} model")
|
|
llama = LLaMa.build(WEIGHTS_DIR, TOKENIZER_FILENAME, model_gen=args.gen, model_size=args.size, quantize=args.quantize)
|
|
|
|
if chatbot:
|
|
# encode pre prompt
|
|
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(pre_prompt)
|
|
|
|
print(f"Preparing KV cache for chatbot with personality {args.personality}...")
|
|
with Timing():
|
|
llama.model(Tensor([toks]), 0).realize() # NOTE: output logits are not used
|
|
start_pos = len(toks)
|
|
else:
|
|
# non chat bot mode
|
|
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(args.prompt)
|
|
start_pos = 0
|
|
|
|
# print prompt
|
|
outputted = llama.tokenizer.decode(toks)
|
|
sys.stdout.write(outputted)
|
|
sys.stdout.flush()
|
|
|
|
if args.profile:
|
|
import cProfile, pstats
|
|
profiler = cProfile.Profile()
|
|
|
|
# chatbot loop
|
|
while 1:
|
|
# add tokens from user in chatbot mode
|
|
if chatbot:
|
|
user_prompt = user_delim + input(user_delim) + "\n"
|
|
outputted += user_prompt
|
|
|
|
new_toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
|
|
assert toks == new_toks[:len(toks)]
|
|
toks = new_toks
|
|
assert outputted == llama.tokenizer.decode(toks)
|
|
|
|
last_break = len(outputted)
|
|
for i in range(args.count):
|
|
if args.profile and i == 2: profiler.enable()
|
|
|
|
if args.timing: print("")
|
|
st = GlobalCounters.time_sum_s
|
|
with Timing("ran model in ", on_exit=(lambda et: f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU") if DEBUG else None, enabled=args.timing):
|
|
logits = llama.model(Tensor([toks[start_pos:]]), start_pos).realize()[:, -1, :]
|
|
with Timing("sync in ", enabled=args.timing):
|
|
tok = sample(logits, args.temperature)
|
|
|
|
# use the kv cache
|
|
start_pos = len(toks)
|
|
|
|
# add the new token
|
|
toks.append(tok)
|
|
|
|
# TODO: this is a hack to deal with spaces. i think the decode is fast though, so who cares?
|
|
cur = llama.tokenizer.decode(toks)
|
|
sys.stdout.write(cur[len(outputted):])
|
|
sys.stdout.flush()
|
|
outputted = cur
|
|
|
|
# stop after you have your answer
|
|
if chatbot and outputted.endswith(end_delim): break
|
|
if not chatbot: break
|
|
|
|
if args.profile:
|
|
profiler.disable()
|
|
stats = pstats.Stats(profiler)
|
|
stats.dump_stats('out.prof')
|