mirror of https://github.com/commaai/tinygrad.git
54 lines
1.9 KiB
Python
54 lines
1.9 KiB
Python
# beautiful mnist in the new "one-shot" style
|
|
# one realize in the whole graph
|
|
# depends on:
|
|
# - "big graph" UOp scheduling
|
|
# - symbolic removal
|
|
|
|
from examples.beautiful_mnist import Model
|
|
from tinygrad import Tensor, nn, getenv, GlobalCounters
|
|
from tinygrad.nn.datasets import mnist
|
|
from tinygrad.helpers import trange, DEBUG
|
|
|
|
if __name__ == "__main__":
|
|
X_train, Y_train, X_test, Y_test = mnist()
|
|
print("*** got data")
|
|
|
|
model = Model()
|
|
print("*** got model")
|
|
|
|
opt = nn.optim.Adam(nn.state.get_parameters(model))
|
|
print("*** got optimizer")
|
|
|
|
samples = Tensor.randint(getenv("STEPS", 10), getenv("BS", 512), high=X_train.shape[0])
|
|
X_samp, Y_samp = X_train[samples], Y_train[samples]
|
|
print("*** got samples")
|
|
|
|
with Tensor.train():
|
|
# TODO: this shouldn't be a for loop. something like: (contract is still up in the air)
|
|
"""
|
|
i = UOp.range(samples.shape[0]) # TODO: fix range function on UOp
|
|
losses = model(X_samp[i]).sparse_categorical_crossentropy(Y_samp[i]).backward().contract(i)
|
|
opt.schedule_steps(i)
|
|
"""
|
|
losses = []
|
|
for i in range(samples.shape[0]):
|
|
opt.zero_grad()
|
|
losses.append(model(X_samp[i]).sparse_categorical_crossentropy(Y_samp[i]).backward())
|
|
opt.schedule_step()
|
|
# TODO: this stack currently breaks the "generator" aspect of losses. it probably shouldn't
|
|
#losses = Tensor.stack(*losses)
|
|
print("*** scheduled training")
|
|
|
|
# evaluate the model
|
|
with Tensor.test():
|
|
test_acc = ((model(X_test).argmax(axis=1) == Y_test).mean()*100)
|
|
print("*** scheduled eval")
|
|
|
|
# NOTE: there's no kernels run in the scheduling phase
|
|
assert GlobalCounters.kernel_count == 0, "kernels were run during scheduling!"
|
|
|
|
# only actually do anything at the end
|
|
if getenv("LOSS", 1):
|
|
for i in (t:=trange(len(losses))): t.set_description(f"loss: {losses[i].item():6.2f}")
|
|
print(f"test_accuracy: {test_acc.item():5.2f}%")
|