tinygrad/test/unit/test_disk_tensor.py

221 lines
9.5 KiB
Python

import pathlib, unittest
import numpy as np
from tinygrad import Tensor, Device, dtypes
from tinygrad.nn.state import safe_load, safe_save, get_state_dict, torch_load
from tinygrad.helpers import Timing, CI, fetch, temp
def compare_weights_both(url):
import torch
fn = fetch(url)
tg_weights = get_state_dict(torch_load(fn))
torch_weights = get_state_dict(torch.load(fn, map_location=torch.device('cpu')), tensor_type=torch.Tensor)
assert list(tg_weights.keys()) == list(torch_weights.keys())
for k in tg_weights:
if tg_weights[k].dtype == dtypes.bfloat16: tg_weights[k] = torch_weights[k].float() # numpy doesn't support bfloat16
if torch_weights[k].dtype == torch.bfloat16: torch_weights[k] = torch_weights[k].float() # numpy doesn't support bfloat16
if torch_weights[k].requires_grad: torch_weights[k] = torch_weights[k].detach()
np.testing.assert_equal(tg_weights[k].numpy(), torch_weights[k].numpy(), err_msg=f"mismatch at {k}, {tg_weights[k].shape}")
print(f"compared {len(tg_weights)} weights")
class TestTorchLoad(unittest.TestCase):
# pytorch pkl format
def test_load_enet(self): compare_weights_both("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth")
# pytorch zip format
def test_load_enet_alt(self): compare_weights_both("https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth")
# pytorch zip format
def test_load_convnext(self): compare_weights_both('https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth')
# for GPU, cl_khr_fp16 isn't supported
# for LLVM, it segfaults because it can't link to the casting function
# CUDACPU architecture is sm_35 but we need at least sm_70 to run fp16 ALUs
@unittest.skipIf(Device.DEFAULT in ["GPU", "LLVM", "CUDA"] and CI, "fp16 broken in some backends")
def test_load_llama2bfloat(self): compare_weights_both("https://huggingface.co/qazalin/bf16-lightweight/resolve/main/consolidated.00.pth?download=true")
# pytorch tar format
def test_load_resnet(self): compare_weights_both('https://download.pytorch.org/models/resnet50-19c8e357.pth')
test_fn = pathlib.Path(__file__).parents[2] / "weights/LLaMA/7B/consolidated.00.pth"
#test_size = test_fn.stat().st_size
test_size = 1024*1024*1024*2
# sudo su -c 'sync; echo 1 > /proc/sys/vm/drop_caches' && python3 test/unit/test_disk_tensor.py TestRawDiskBuffer.test_readinto_read_speed
@unittest.skipIf(not test_fn.exists(), "download LLaMA weights for read in speed tests")
class TestRawDiskBuffer(unittest.TestCase):
def test_readinto_read_speed(self):
tst = np.empty(test_size, np.uint8)
with open(test_fn, "rb") as f:
with Timing("copy in ", lambda et_ns: f" {test_size/et_ns:.2f} GB/s"):
f.readinto(tst)
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "webgpu doesn't support uint8 datatype")
class TestSafetensors(unittest.TestCase):
def test_real_safetensors(self):
import torch
from safetensors.torch import save_file
torch.manual_seed(1337)
tensors = {
"weight1": torch.randn((16, 16)),
"weight2": torch.arange(0, 17, dtype=torch.uint8),
"weight3": torch.arange(0, 17, dtype=torch.int32).reshape(17,1,1),
"weight4": torch.arange(0, 2, dtype=torch.uint8),
}
save_file(tensors, temp("model.safetensors"))
ret = safe_load(temp("model.safetensors"))
for k,v in tensors.items(): np.testing.assert_array_equal(ret[k].numpy(), v.numpy())
safe_save(ret, temp("model.safetensors_alt"))
with open(temp("model.safetensors"), "rb") as f:
with open(temp("model.safetensors_alt"), "rb") as g:
assert f.read() == g.read()
ret2 = safe_load(temp("model.safetensors_alt"))
for k,v in tensors.items(): np.testing.assert_array_equal(ret2[k].numpy(), v.numpy())
def test_real_safetensors_open(self):
fn = temp("real_safe")
state_dict = {"tmp": Tensor.rand(10,10)}
safe_save(state_dict, fn)
import os
assert os.path.getsize(fn) == 8+0x40+(10*10*4)
from safetensors import safe_open
with safe_open(fn, framework="pt", device="cpu") as f:
assert sorted(f.keys()) == sorted(state_dict.keys())
for k in f.keys():
np.testing.assert_array_equal(f.get_tensor(k).numpy(), state_dict[k].numpy())
def test_efficientnet_safetensors(self):
from extra.models.efficientnet import EfficientNet
model = EfficientNet(0)
state_dict = get_state_dict(model)
safe_save(state_dict, temp("eff0"))
state_dict_loaded = safe_load(temp("eff0"))
assert sorted(state_dict_loaded.keys()) == sorted(state_dict.keys())
for k,v in state_dict.items():
np.testing.assert_array_equal(v.numpy(), state_dict_loaded[k].numpy())
# load with the real safetensors
from safetensors import safe_open
with safe_open(temp("eff0"), framework="pt", device="cpu") as f:
assert sorted(f.keys()) == sorted(state_dict.keys())
for k in f.keys():
np.testing.assert_array_equal(f.get_tensor(k).numpy(), state_dict[k].numpy())
def test_huggingface_enet_safetensors(self):
# test a real file
fn = fetch("https://huggingface.co/timm/mobilenetv3_small_075.lamb_in1k/resolve/main/model.safetensors")
state_dict = safe_load(fn)
assert len(state_dict.keys()) == 244
assert 'blocks.2.2.se.conv_reduce.weight' in state_dict
assert state_dict['blocks.0.0.bn1.num_batches_tracked'].numpy() == 276570
assert state_dict['blocks.2.0.bn2.num_batches_tracked'].numpy() == 276570
def test_metadata(self):
metadata = {"hello": "world"}
safe_save({}, temp('metadata.safetensors'), metadata)
import struct
with open(temp('metadata.safetensors'), 'rb') as f:
dat = f.read()
sz = struct.unpack(">Q", dat[0:8])[0]
import json
assert json.loads(dat[8:8+sz])['__metadata__']['hello'] == 'world'
def test_save_all_dtypes(self):
for dtype in dtypes.fields().values():
if dtype in [dtypes.bfloat16]: continue # not supported in numpy
path = temp(f"ones.{dtype}.safetensors")
ones = Tensor.rand((10,10), dtype=dtype)
safe_save(get_state_dict(ones), path)
assert ones == list(safe_load(path).values())[0]
def test_load_supported_types(self):
import torch
from safetensors.torch import save_file
from safetensors.numpy import save_file as np_save_file
torch.manual_seed(1337)
tensors = {
"weight_F16": torch.randn((2, 2), dtype=torch.float16),
"weight_F32": torch.randn((2, 2), dtype=torch.float32),
"weight_U8": torch.tensor([1, 2, 3], dtype=torch.uint8),
"weight_I8": torch.tensor([-1, 2, 3], dtype=torch.int8),
"weight_I32": torch.tensor([-1, 2, 3], dtype=torch.int32),
"weight_I64": torch.tensor([-1, 2, 3], dtype=torch.int64),
"weight_F64": torch.randn((2, 2), dtype=torch.double),
"weight_BOOL": torch.tensor([True, False], dtype=torch.bool),
"weight_I16": torch.tensor([127, 64], dtype=torch.short),
"weight_BF16": torch.randn((2, 2), dtype=torch.bfloat16),
}
save_file(tensors, temp("model.safetensors"))
loaded = safe_load(temp("model.safetensors"))
for k,v in loaded.items():
if v.dtype != dtypes.bfloat16:
assert v.numpy().dtype == tensors[k].numpy().dtype
np.testing.assert_allclose(v.numpy(), tensors[k].numpy())
# pytorch does not support U16, U32, and U64 dtypes.
tensors = {
"weight_U16": np.array([1, 2, 3], dtype=np.uint16),
"weight_U32": np.array([1, 2, 3], dtype=np.uint32),
"weight_U64": np.array([1, 2, 3], dtype=np.uint64),
}
np_save_file(tensors, temp("model.safetensors"))
loaded = safe_load(temp("model.safetensors"))
for k,v in loaded.items():
assert v.numpy().dtype == tensors[k].dtype
np.testing.assert_allclose(v.numpy(), tensors[k])
def helper_test_disk_tensor(fn, data, np_fxn, tinygrad_fxn=None):
if tinygrad_fxn is None: tinygrad_fxn = np_fxn
pathlib.Path(temp(fn)).unlink(missing_ok=True)
tinygrad_tensor = Tensor(data, device="CLANG").to(f"disk:{temp(fn)}")
numpy_arr = np.array(data)
tinygrad_fxn(tinygrad_tensor)
np_fxn(numpy_arr)
np.testing.assert_allclose(tinygrad_tensor.numpy(), numpy_arr)
class TestDiskTensor(unittest.TestCase):
def test_empty(self):
pathlib.Path(temp("dt1")).unlink(missing_ok=True)
Tensor.empty(100, 100, device=f"disk:{temp('dt1')}")
def test_write_ones(self):
pathlib.Path(temp("dt2")).unlink(missing_ok=True)
out = Tensor.ones(10, 10, device="CLANG").contiguous()
outdisk = out.to(f"disk:{temp('dt2')}")
print(outdisk)
outdisk.realize()
del out, outdisk
import struct
# test file
with open(temp("dt2"), "rb") as f:
assert f.read() == struct.pack('<f', 1.0) * 100 == b"\x00\x00\x80\x3F" * 100
# test load alt
reloaded = Tensor.empty(10, 10, device=f"disk:{temp('dt2')}")
np.testing.assert_almost_equal(reloaded.numpy(), np.ones((10, 10)))
def test_assign_slice(self):
def assign(x,s,y): x[s] = y
helper_test_disk_tensor("dt3", [0,1,2,3], lambda x: assign(x, slice(0,2), [13, 12]))
helper_test_disk_tensor("dt4", [[0,1,2,3],[4,5,6,7]], lambda x: assign(x, slice(0,1), [[13, 12, 11, 10]]))
def test_reshape(self):
helper_test_disk_tensor("dt5", [1,2,3,4,5], lambda x: x.reshape((1,5)))
helper_test_disk_tensor("dt6", [1,2,3,4], lambda x: x.reshape((2,2)))
def test_assign_to_different_dtype(self):
# NOTE: this is similar to Y_train in fetch_cifar
t = Tensor.empty(10, device=f'disk:{temp("dt7")}', dtype=dtypes.int64)
for i in range(5):
data = np.array([3, 3])
idx = 2 * i
t[idx:idx+2].assign(data)
np.testing.assert_array_equal(t.numpy(), np.array([3] * 10))
if __name__ == "__main__":
unittest.main()