mirror of https://github.com/commaai/tinygrad.git
190 lines
7.4 KiB
Python
190 lines
7.4 KiB
Python
import unittest
|
|
from tinygrad.shape.shapetracker import ShapeTracker, View
|
|
from tinygrad.shape.symbolic import Variable, NumNode
|
|
from tinygrad.tensor import Tensor
|
|
|
|
class TestSymbolic(unittest.TestCase):
|
|
def test_symbolic_st(self):
|
|
x = Variable("x", 1, 100)
|
|
st = ShapeTracker.from_shape((x, 3))
|
|
assert st.shape == (x, 3)
|
|
assert st.real_strides() == (3, 1)
|
|
|
|
def test_expr_idxs(self):
|
|
x = Variable("x", 1, 100)
|
|
st = ShapeTracker.from_shape((x, 3))
|
|
idxs = [Variable("x", 0, 100), Variable("y", 0, 100)]
|
|
e1, e2 = st.expr_idxs(idxs)
|
|
assert e1.render() == "((x*3)+y)"
|
|
assert e2.render() == "1"
|
|
st = st.permute((1, 0))
|
|
e1, e2 = st.expr_idxs(idxs)
|
|
assert e1.render() == "((y*3)+x)"
|
|
assert e2.render() == "1"
|
|
|
|
def test_cat_dim0_strides(self):
|
|
i = Variable("i", 1, 5).bind(3)
|
|
j = Variable("j", 1, 5).bind(3)
|
|
k = Variable("k", 1, 5).bind(3)
|
|
t = Tensor.rand(3, 4).reshape(i, 4).cat(Tensor.rand(3, 4).reshape(j, 4), dim=0).cat(Tensor.rand(3, 4).reshape(k, 4), dim=0)
|
|
st = t.lazydata.st
|
|
assert st.shape == (i+j+k, 4)
|
|
assert st.real_strides() == (4, 1)
|
|
t = Tensor.rand(3, 3).reshape(i, 3).cat(Tensor.rand(3, 3).reshape(i, 3), dim=0).cat(Tensor.rand(3, 3), dim=0)
|
|
st = t.lazydata.st
|
|
assert st.shape == (2*i+3, 3)
|
|
assert st.real_strides() == (3, 1)
|
|
|
|
def test_cat_dim1_strides(self):
|
|
i = Variable("i", 1, 5).bind(4)
|
|
j = Variable("j", 1, 5).bind(4)
|
|
k = Variable("k", 1, 5).bind(4)
|
|
t = Tensor.rand(3, 4).reshape(3, i).cat(Tensor.rand(3, 4).reshape(3, j), dim=1).cat(Tensor.rand(3, 4).reshape(3, k), dim=1)
|
|
st = t.lazydata.st
|
|
assert st.shape == (3, i+j+k)
|
|
assert st.real_strides() == (i+j+k, 1)
|
|
|
|
class TestSymbolicVarVals(unittest.TestCase):
|
|
def test_var_vals_empty(self):
|
|
assert ShapeTracker.from_shape((3, 4, 5)).var_vals == {}
|
|
|
|
def test_var_vals_shape(self):
|
|
x = Variable("x", 1, 100).bind(3)
|
|
assert ShapeTracker.from_shape((x, 3)).var_vals == {Variable("x", 1, 100): 3}
|
|
|
|
def test_var_vals_offset(self):
|
|
x = Variable("x", 1, 100).bind(3)
|
|
st = ShapeTracker.from_shape((4, 3)).shrink(((x, x+1), (0, 3)))
|
|
assert st.views[-1].offset == x * 3
|
|
assert st.var_vals == {Variable("x", 1, 100): 3}
|
|
|
|
def test_var_vals_mask(self):
|
|
x = Variable("x", 1, 100).bind(3)
|
|
view = View.create(shape=(3,4), strides=(4,1), offset=0, mask=((0, x), (0, 4)))
|
|
st = ShapeTracker(views=(view,))
|
|
assert st.var_vals == {Variable("x", 1, 100): 3}
|
|
|
|
def test_var_vals_complex(self):
|
|
x = Variable("x", 1, 100).bind(3)
|
|
y = Variable("y", 1, 100).bind(4)
|
|
z = Variable("z", 1, 100).bind(5)
|
|
st = ShapeTracker.from_shape((x, 5, y)).shrink(((0, x), (z, z+1), (0, 3)))
|
|
assert st.views[-1].offset == y * z
|
|
assert st.var_vals == {Variable("x", 1, 100): 3, Variable("y", 1, 100):4, Variable("z", 1, 100): 5}
|
|
|
|
def test_shrink_reshape(self):
|
|
x = Variable("x", 1, 100).bind(3)
|
|
st = ShapeTracker.from_shape((10, 10, 10)).shrink(((x, x+3), (3, 7), (2, 5)))
|
|
st = st.reshape((3*4*3,))
|
|
assert st.var_vals == {Variable("x", 1, 100): 3}
|
|
|
|
class TestShapeTrackerUnbind(unittest.TestCase):
|
|
def test_view_unbind(self):
|
|
v = Variable("v", 1, 100)
|
|
bv = Variable("v", 1, 100).bind(3)
|
|
unbound_view, var_val = View.create(shape=(bv, 4)).unbind()
|
|
assert unbound_view == View.create(shape=(v, 4))
|
|
assert var_val == {v: 3}
|
|
|
|
def test_reshape_unbind(self):
|
|
v = Variable("v", 1, 100)
|
|
bv = Variable("v", 1, 100).bind(3)
|
|
t = Tensor.rand(3, 4).reshape(bv, 4)
|
|
unbound_st, var_val = t.lazydata.st.unbind()
|
|
assert unbound_st == ShapeTracker((View.create(shape=(v, 4)),))
|
|
assert var_val == {v: 3}
|
|
|
|
def test_shrink_unbind(self):
|
|
v = Variable("v", 1, 100)
|
|
bv = Variable("v", 1, 100).bind(2)
|
|
t = Tensor.rand(3, 4).shrink(((bv, bv+1), (0, 4)))
|
|
unbound_st, var_val = t.lazydata.st.unbind()
|
|
assert unbound_st == ShapeTracker((View.create(shape=(1, 4), offset=4*v),))
|
|
assert var_val == {v: 2}
|
|
|
|
class TestSymbolicReshape(unittest.TestCase):
|
|
def test_reshape_into_symbols_simple(self):
|
|
for i in range(1, 6):
|
|
vi = Variable("i", 1, 5).bind(i)
|
|
t = Tensor.rand(i, 4).reshape(vi, 4)
|
|
assert t.shape == (vi, 4)
|
|
t = Tensor.rand(i, 6).reshape(vi, 2, 3)
|
|
assert t.shape == (vi, 2, 3)
|
|
|
|
def test_reshape_symbols_reshape_ints(self):
|
|
for i in range(1, 6):
|
|
vi = Variable("i", 1, 5).bind(i)
|
|
t = Tensor.rand(i, 4).reshape(vi, 4)
|
|
assert t.shape == (vi, 4)
|
|
t = t.reshape(i, 4)
|
|
assert t.shape == (i, 4)
|
|
|
|
def test_reshape_into_symbols_bad_shape(self):
|
|
vi = Variable("i", 1, 10).bind(4)
|
|
# TODO: this never actually worked, it relied on lazy
|
|
#with self.assertRaises(ValueError):
|
|
# Tensor.rand(4, 6).reshape(vi, 6).reshape(1, 77) # reshape to a different size new shape through symbolic shape
|
|
with self.assertRaises(AssertionError):
|
|
Tensor.rand(3, 4).reshape(3, (vi+1)) # reshape into non-Variable Node
|
|
|
|
def test_two_symbol_reshape(self):
|
|
for i in range(1, 6):
|
|
for j in range(1, 6):
|
|
vi = Variable("i", 1, 5).bind(i)
|
|
vj = Variable("j", 1, 5).bind(j)
|
|
t = Tensor.rand(i, j).reshape(vi, vj)
|
|
assert t.shape == (vi, vj)
|
|
# NOTE: this is currently not allowed
|
|
# t = t.reshape(1, vi*vj)
|
|
# assert t.shape == (1, vi*vj)
|
|
t = t.reshape(vj, vi)
|
|
assert t.shape == (vj, vi)
|
|
|
|
def test_symbolic_mask(self):
|
|
# taken from gpt2 single kvcache
|
|
# these two caused problems in gpt2 if reshape merged views
|
|
view = View(shape=(1, (NumNode(1)+Variable('start_pos', 1, 128).bind(2)), 16, 64), strides=(0, 0, 64, 1), offset=NumNode(1024), mask=((0, 1), (Variable('start_pos', 1, 128).bind(2), (NumNode(1)+Variable('start_pos', 1, 128).bind(2))), (0, 16), (0, 64)), contiguous=False) # noqa: E501
|
|
new_shape = (1, 1, (NumNode(1)+Variable('start_pos', 1, 128).bind(2)), 16, 64)
|
|
assert view.reshape(new_shape) is None
|
|
|
|
view = View(shape=(2, 1, (NumNode(1)+Variable('start_pos', 1, 128)), 16, 64), strides=(0, 0, 1024, 64, 1), offset=131072, mask=((1, 2), (0, 1), (0, (NumNode(1)+Variable('start_pos', 1, 128))), (0, 16), (0, 64)), contiguous=False) # noqa: E501
|
|
new_shape = (2, (NumNode(1)+Variable('start_pos', 1, 128)), 16, 64)
|
|
assert view.reshape(new_shape) is None
|
|
|
|
class TestSymbolicExpand(unittest.TestCase):
|
|
def test_expand_into_symbols(self):
|
|
vi = Variable("i", 1, 5).bind(3)
|
|
vj = Variable("j", 1, 5).bind(3)
|
|
a = Tensor([[1], [2], [3]]).expand((3, vi))
|
|
assert a.shape == (3, vi)
|
|
a = a.reshape(3, vi, 1).expand((3, vi, vj))
|
|
assert a.shape == (3, vi, vj)
|
|
|
|
def test_plus_expands_constant(self):
|
|
for i in range(1, 6):
|
|
vi = Variable("i", 1, 5).bind(i)
|
|
a = Tensor.rand(3, i).reshape(3, vi)
|
|
a = a + 1
|
|
assert a.shape == (3, vi)
|
|
|
|
class TestSymbolicShrink(unittest.TestCase):
|
|
def test_shrink_symbols(self):
|
|
vi = Variable("i", 1, 5)
|
|
t = Tensor.rand(3, 5).shrink(((0, 2), (vi, vi+1)))
|
|
assert t.shape == (2, 1)
|
|
|
|
class TestSymbolicShapeExpr(unittest.TestCase):
|
|
def test_symbolic_expr_idxs(self):
|
|
# taken from symbolic shape llama
|
|
i = Variable("i", 1, 120)
|
|
gidx0 = Variable("gidx0", 0, i)
|
|
lidx1 = Variable("lidx1", 0, 7)
|
|
idx = (gidx0, lidx1, NumNode(1))
|
|
shape = (i+1, 8, 4)
|
|
strides = (1, (i*4)+4, i+1)
|
|
st = ShapeTracker((View.create(shape, strides), ))
|
|
idx, _valid = st.expr_idxs(idx)
|
|
assert idx.render() == "((lidx1*((i*4)+4))+1+gidx0+i)"
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main() |