tinygrad/examples/openpilot/compile3.py

81 lines
3.2 KiB
Python

import os, sys, pickle, time
import numpy as np
if "FLOAT16" not in os.environ: os.environ["FLOAT16"] = "1"
if "IMAGE" not in os.environ: os.environ["IMAGE"] = "2"
if "NOLOCALS" not in os.environ: os.environ["NOLOCALS"] = "1"
if "JIT_BATCH_SIZE" not in os.environ: os.environ["JIT_BATCH_SIZE"] = "0"
from tinygrad import fetch, Tensor, TinyJit, Device, Context, GlobalCounters
from tinygrad.helpers import OSX, DEBUG, getenv
from tinygrad.tensor import _from_np_dtype
import onnx
from onnx.helper import tensor_dtype_to_np_dtype
from extra.onnx import get_run_onnx # TODO: port to main tinygrad
OPENPILOT_MODEL = sys.argv[1] if len(sys.argv) > 1 else "https://github.com/commaai/openpilot/raw/v0.9.7/selfdrive/modeld/models/supercombo.onnx"
OUTPUT = "/tmp/openpilot.pkl"
def compile():
# hack to fix GPU on OSX: max doesn't work on half, see test/external/external_gpu_fail_osx.py
if OSX:
from tinygrad.ops import BinaryOps
from tinygrad.renderer.cstyle import ClangRenderer, CStyleLanguage
CStyleLanguage.code_for_op[BinaryOps.MAX] = ClangRenderer.code_for_op[BinaryOps.MAX]
Tensor.no_grad = True
Tensor.training = False
onnx_bytes = fetch(OPENPILOT_MODEL)
onnx_model = onnx.load(onnx_bytes)
run_onnx = get_run_onnx(onnx_model)
print("loaded model")
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
input_types = {inp.name: tensor_dtype_to_np_dtype(inp.type.tensor_type.elem_type) for inp in onnx_model.graph.input}
Tensor.manual_seed(100)
new_inputs = {k:Tensor.randn(*shp, dtype=_from_np_dtype(input_types[k])).mul(8).realize() for k,shp in sorted(input_shapes.items())}
print("created tensors")
run_onnx_jit = TinyJit(lambda **kwargs: run_onnx(kwargs), prune=True)
for i in range(3):
GlobalCounters.reset()
print(f"run {i}")
with Context(DEBUG=max(DEBUG.value, 2 if i == 2 else 1)):
ret = next(iter(run_onnx_jit(**new_inputs).values())).cast('float32').numpy()
if i == 0: test_val = np.copy(ret)
print(f"captured {len(run_onnx_jit.captured.jit_cache)} kernels")
np.testing.assert_equal(test_val, ret)
print("jit run validated")
with open(OUTPUT, "wb") as f:
pickle.dump(run_onnx_jit, f)
mdl_sz = os.path.getsize(onnx_bytes)
pkl_sz = os.path.getsize(OUTPUT)
print(f"mdl size is {mdl_sz/1e6:.2f}M")
print(f"pkl size is {pkl_sz/1e6:.2f}M")
print("**** compile done ****")
return test_val
def test(test_val=None):
with open(OUTPUT, "rb") as f:
run = pickle.load(f)
Tensor.manual_seed(100)
new_inputs = {nm:Tensor.randn(*st.shape, dtype=dtype).mul(8).realize() for nm, (st, _, dtype, _) in
sorted(zip(run.captured.expected_names, run.captured.expected_st_vars_dtype_device))}
for _ in range(20):
st = time.perf_counter()
out = run(**new_inputs)
mt = time.perf_counter()
val = out['outputs'].numpy()
et = time.perf_counter()
print(f"enqueue {(mt-st)*1e3:6.2f} ms -- total run {(et-st)*1e3:6.2f} ms")
print(out, val.shape, val.dtype)
if test_val is not None: np.testing.assert_equal(test_val, val)
print("**** test done ****")
if __name__ == "__main__":
test_val = compile() if not getenv("RUN") else None
test(test_val)