tinygrad/examples/openpilot/compile2.py

211 lines
8.9 KiB
Python

#!/usr/bin/env python3
import os, sys, io, pathlib, json, struct
import numpy as np
sys.path.insert(0, str(pathlib.Path(__file__).parents[1]))
if "FLOAT16" not in os.environ: os.environ["FLOAT16"] = "1"
if "IMAGE" not in os.environ: os.environ["IMAGE"] = "2"
if "NOLOCALS" not in os.environ: os.environ["NOLOCALS"] = "1"
OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx"
import onnx
from typing import Tuple, List, Optional, Dict, cast
from extra.onnx import get_run_onnx
from tinygrad import Tensor, Device, GlobalCounters, dtypes
from tinygrad.dtype import ImageDType
from tinygrad.device import Buffer
from tinygrad.helpers import partition, Context, fetch, getenv, DEBUG, tqdm
from tinygrad.engine.realize import run_schedule, lower_schedule, ExecItem, CompiledRunner, memory_planner
from tinygrad.engine.schedule import ScheduleItem, create_schedule
from tinygrad.ops import UOps
from tinygrad.tensor import _to_np_dtype
Device.DEFAULT = "GPU"
def get_schedule(onnx_data) -> Tuple[List[ScheduleItem], List[ScheduleItem]]:
Tensor.no_grad = True
Tensor.training = False
# load the model
onnx_model = onnx.load(io.BytesIO(onnx_data))
run_onnx = get_run_onnx(onnx_model)
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
# run the model
inputs = {k:Tensor.empty(*shp) for k,shp in input_shapes.items()}
ret: Tensor = next(iter(run_onnx(inputs).values())).cast(dtypes.float32).contiguous()
schedule = create_schedule([ret.lazydata])
# filter schedule that don't depend on the inputs
input_lb = [x.lazydata.base.buffer for x in inputs.values()]
depends = set(input_lb)
for si in schedule:
if any(b in depends for b in si.inputs):
for out in si.outputs: depends.add(out)
# run all kernels that don't depend on the inputs
# NOTE: there's two extra kernels due to fusions that now happen since the weights aren't realized
schedule, schedule_independent = partition(schedule, lambda si: any(out in depends for out in si.outputs))
print(f"{len(schedule)} schedule items depend on the input, {len(schedule_independent)} don't")
# confirm no non-sink metaop in the (non independent) schedule except for the ones that load the input buffers
assert all(si.ast.op is UOps.SINK or out in input_lb for si in schedule for out in si.outputs), "has non SINK ops, can't compile to Thneed"
return schedule, schedule_independent, inputs
def test_vs_onnx(onnx_data, eis:Optional[List[ExecItem]], inputs:Dict[str, Tensor]):
import onnx
#import pyopencl as cl
#from extra.thneed import Thneed
import numpy as np
onnx_model = onnx.load(io.BytesIO(onnx_data))
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
Tensor.manual_seed(1337)
new_inputs = {k:Tensor.randn(*shp, requires_grad=False)*8 for k,shp in input_shapes.items()}
new_np_inputs = {k:v.realize().numpy() for k,v in new_inputs.items()}
if getenv("ORT"):
# test with onnxruntime
import onnxruntime as ort
onnx_session = ort.InferenceSession(onnx_data)
onnx_output = onnx_session.run([onnx_model.graph.output[0].name], {k:v.astype(np.float16) for k,v in new_np_inputs.items()})
new_torch_out = onnx_output[0]
print("got ort outputs")
else:
# test with torch
from test.models.test_onnx import run_onnx_torch
new_torch_out = run_onnx_torch(onnx_model, new_np_inputs).numpy()
print("got torch outputs")
# if you don't have a schedule
if eis is None:
run_onnx = get_run_onnx(onnx_model)
new_tinygrad_out = next(iter(run_onnx(new_inputs).values())).cast(dtypes.float32).numpy()
np.testing.assert_allclose(new_torch_out, new_tinygrad_out, atol=1e-4, rtol=1e-2)
print("classic self-test passed!")
return
# set inputs
for k,v in inputs.items(): v.lazydata.base.realized.copyin(new_np_inputs[k].data)
# run code (all buffers have been allocated)
GlobalCounters.reset()
output = eis[-1].bufs[0]
for ei in eis: ei.run()
new_tinygrad_out = np.frombuffer(output.as_buffer(), dtype=_to_np_dtype(output.dtype))
np.testing.assert_allclose(new_torch_out.reshape(new_tinygrad_out.shape), new_tinygrad_out, atol=1e-4, rtol=1e-2)
print("semi-thneed self-test passed!")
if __name__ == "__main__":
onnx_data = fetch(sys.argv[1] if len(sys.argv) > 1 else OPENPILOT_MODEL).read_bytes()
# quick test for ONNX issues
#thneed_test_onnx(onnx_data, None)
#exit(0)
schedule, schedule_independent, inputs = get_schedule(onnx_data)
schedule, schedule_input = partition(schedule, lambda x: x.ast.op is UOps.SINK)
print(f"{len(schedule_input)} inputs")
run_schedule(schedule_independent)
run_schedule(schedule_input)
with Context(DEBUG=max(DEBUG.value, 2), BEAM=getenv("LATEBEAM")):
schedule = memory_planner(schedule)
for si in schedule:
for b in si.outputs:
assert not b.is_allocated(), "output should not be allocated"
image_count = sum(isinstance(out.dtype, ImageDType) for si in schedule for out in si.outputs)
print(f"**** compiling real kernels {image_count}/{len(schedule)} images ****")
eis = list(tqdm(lower_schedule(schedule), total=len(schedule)))
print("kernel count:", len(eis))
assert len(eis) <= getenv("ALLOWED_KERNEL_COUNT", 0) or getenv("ALLOWED_KERNEL_COUNT", 0) == 0, "too many kernels!"
# new simple thneed
def to_ref(b:Buffer): return struct.pack("Q", id(b)).decode("latin_1")
seen_buffers = set()
input_buffers = [x.lazydata.buffer for x in inputs.values()]
jdat = {"binaries": [], "programs": {}, "kernels": [], "objects": []}
jdat["inputs"] = {k:to_ref(v.lazydata.buffer) for k,v in inputs.items()}
jdat["outputs"] = [to_ref(eis[-1].bufs[0])]
weights = []
for i,ei in enumerate(eis):
#print("***", i)
for b in ei.bufs:
needs_load = b.is_allocated() and b not in input_buffers
#print(b, needs_load)
if b in seen_buffers: continue
seen_buffers.add(b)
if isinstance(b.dtype, ImageDType):
base_dtype = dtypes.float16 if b.dtype.fmt == 'e' else dtypes.float32
row_pitch = (b.dtype.shape[0]*4*base_dtype.itemsize + 63)//64 * 64
size = row_pitch * b.dtype.shape[1]
jdat['objects'].append({
"id": to_ref(b), "needs_load": needs_load, "size": size, "arg_type": "image2d_t",
"width": b.dtype.shape[0], "height": b.dtype.shape[1], "row_pitch": row_pitch, "float32": b.dtype.base == dtypes.float32,
})
if needs_load:
t = Tensor.empty(b.dtype.shape, dtype=b.dtype)
t.lazydata.buffer = b
data = t.cast(dtypes.float32).pad(((0, row_pitch//(4*base_dtype.itemsize)-b.dtype.shape[0]), (0,0), (0,0))).contiguous().numpy()
# NOTE: this cast must be done in numpy for platforms that don't support half
if base_dtype == dtypes.float16: data = data.astype(np.float16)
weights.append(data.tobytes())
assert len(weights[-1]) == size, "wrong size buffer"
else:
jdat['objects'].append({
"id": to_ref(b), "arg_type": b.dtype.name + "*", "needs_load": needs_load, "size": b.nbytes,
})
if needs_load:
weights.append(b.as_buffer())
assert len(weights[-1]) == b.nbytes, "wrong size buffer"
saved_binaries = set()
binaries = []
gated_read_image_count = 0
GlobalCounters.reset()
with Context(DEBUG=max(DEBUG.value, 2)):
for ei in eis:
prg = cast(CompiledRunner, ei.prg)
assert len(prg.p.vars) == 0
if prg.p.function_name not in saved_binaries:
jdat['binaries'].append({"name":prg.p.function_name, "length":len(prg.lib)})
binaries.append(prg.lib)
saved_binaries.add(prg.p.function_name)
gated_read_image_count += prg.p.src.count("?read_image")
ei.run()
jdat['kernels'].append({
"name": prg.p.function_name,
"work_dim": len(prg.p.global_size),
"global_work_size": prg.p.global_size,
"local_work_size": prg.p.local_size,
"num_args": len(ei.bufs),
"args": [to_ref(b) for b in ei.bufs],
"arg_size": [8]*len(ei.bufs),
})
if (allowed_gated_read_image:=getenv("ALLOWED_GATED_READ_IMAGE", -1)) != -1:
assert gated_read_image_count <= allowed_gated_read_image, \
f"too many gated read_image! {gated_read_image_count=}, {allowed_gated_read_image=}"
output_fn = sys.argv[2] if len(sys.argv) >= 3 else "/tmp/output.thneed"
print(f"saving thneed to {output_fn} with {len(weights)} buffers and {len(binaries)} binaries")
with open(output_fn, "wb") as f:
j = json.dumps(jdat, ensure_ascii=False).encode('latin_1')
f.write(struct.pack("I", len(j)))
f.write(j)
for w in weights: f.write(w)
for b in binaries: f.write(b)
print("saved", f.tell(), "bytes")
FLOAT16 = getenv("FLOAT16", 0)
if FLOAT16 == 0:
try:
test_vs_onnx(onnx_data, eis, inputs)
except ModuleNotFoundError as e:
print(f"TEST NOT HAPPENING {e}")