tinygrad/extra/models/llama.py

170 lines
8.5 KiB
Python

from typing import Tuple, Union, Optional, Dict, Any
from tinygrad import Tensor, Variable, TinyJit, dtypes, nn, Device
from tinygrad.helpers import getenv
# https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0) -> Tensor:
freqs = 1.0 / (theta ** (Tensor.arange(0, dim, 2, dtype=dtypes.half)[:(dim // 2)] / dim))
freqs = Tensor.arange(end).unsqueeze(dim=1)*freqs.unsqueeze(dim=0)
return Tensor.stack([Tensor.cos(freqs), Tensor.sin(freqs)], dim=-1).reshape(1, end, 1, dim//2, 2)
# (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
def complex_mult(A, c, d):
a,b = A[..., 0:1], A[..., 1:2]
ro = a*c - b*d
co = a*d + b*c
return ro.cat(co, dim=-1)
def apply_rotary_emb(xq, xk, freqs_cis) -> Tuple[Tensor, Tensor]:
assert freqs_cis.shape[1] == xq.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
xq = xq.reshape(*xq.shape[0:-1], -1, 2)
xk = xk.reshape(*xk.shape[0:-1], -1, 2)
assert len(xq.shape) == len(xk.shape) == len(freqs_cis.shape) == 5
c, d = freqs_cis[..., 0:1], freqs_cis[..., 1:2]
xq_out = complex_mult(xq, c, d)
xk_out = complex_mult(xk, c, d)
return xq_out.flatten(3), xk_out.flatten(3)
def repeat_kv(x:Tensor, n_rep:int) -> Tensor:
bs, seqlen, n_kv_heads, head_dim = x.shape
if n_rep == 1: return x
# NOTE: this is different from x.repeat((1, 1, n_rep, 1))
return x.repeat((1, 1, 1, n_rep)).reshape(bs, seqlen, n_kv_heads * n_rep, head_dim)
class RMSNorm:
def __init__(self, dim, eps=1e-6):
self.eps = eps
self.weight = Tensor.ones(dim)
def __call__(self, x:Tensor):
x = x.float()
return (x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()) * self.weight
class Attention:
def __init__(self, dim, n_heads, n_kv_heads, max_context, linear=nn.Linear):
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads # n_kv_heads != n_heads implies MQA [arxiv/2307.09288, A.2.1]
self.head_dim = dim // n_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.max_context = max_context
self.wq = linear(dim, self.n_heads * self.head_dim, bias=False)
self.wk = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = linear(self.n_heads * self.head_dim, dim, bias=False)
def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]) -> Tensor:
x = x.half()
xq, xk, xv = self.wq(x).half(), self.wk(x).half(), self.wv(x).half()
xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
bsz, seqlen, _, _ = xq.shape
# create kv cache
if not hasattr(self, "cache_kv"):
self.cache_kv = Tensor.zeros(2, bsz, self.max_context, self.n_kv_heads, self.head_dim, dtype=x.dtype).contiguous().realize()
if isinstance(x.device, tuple):
# TODO: instead of specifying how to shard, it can follow how xk and xv are being sharded
self.cache_kv.shard_((x.device), axis=None).realize()
# update the cache
assert xk.dtype == xv.dtype == self.cache_kv.dtype, f"{xk.dtype=}, {xv.dtype=}, {self.cache_kv.dtype=}"
self.cache_kv.shrink((None, None, (start_pos, start_pos+seqlen), None, None)).assign(Tensor.stack([xk, xv])).realize()
keys = self.cache_kv[0].shrink((None, (0, start_pos+seqlen), None, None)) if start_pos > 0 else xk
values = self.cache_kv[1].shrink((None, (0, start_pos+seqlen), None, None)) if start_pos > 0 else xv
keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
attn = xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2)
attn = attn.reshape(bsz, seqlen, -1)
return self.wo(attn)
class FeedForward:
def __init__(self, dim:int, hidden_dim:int, linear=nn.Linear):
self.w1 = linear(dim, hidden_dim, bias=False)
self.w2 = linear(hidden_dim, dim, bias=False)
self.w3 = linear(dim, hidden_dim, bias=False) # the gate in Gated Linear Unit
def __call__(self, x:Tensor) -> Tensor:
return self.w2(self.w1(x).silu() * self.w3(x)) # SwiGLU [arxiv/2002.05202, eq (5)]
class TransformerBlock:
def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_kv_heads:int, norm_eps:float, max_context:int, linear=nn.Linear, feed_forward=FeedForward):
self.attention = Attention(dim, n_heads, n_kv_heads, max_context, linear)
self.feed_forward = feed_forward(dim, hidden_dim, linear)
self.attention_norm = RMSNorm(dim, norm_eps)
self.ffn_norm = RMSNorm(dim, norm_eps)
def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]):
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
return (h + self.feed_forward(self.ffn_norm(h).half())).realize()
class Transformer:
def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_layers:int, norm_eps:float, vocab_size, linear=nn.Linear, n_kv_heads=None, rope_theta=10000, max_context=1024, jit=True, feed_forward=FeedForward):
self.layers = [TransformerBlock(dim, hidden_dim, n_heads, n_kv_heads, norm_eps, max_context, linear, feed_forward=feed_forward) for _ in range(n_layers)]
self.norm = RMSNorm(dim, norm_eps)
self.tok_embeddings = nn.Embedding(vocab_size, dim)
self.output = linear(dim, vocab_size, bias=False)
self.max_context = max_context
self.freqs_cis = precompute_freqs_cis(dim // n_heads, self.max_context * 2, rope_theta)
self.forward_jit = TinyJit(self.forward) if jit else None
def forward(self, tokens:Tensor, start_pos:Union[Variable,int], temperature:float=0.0):
_bsz, seqlen = tokens.shape
freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos+seqlen),None,None,None))
h = self.tok_embeddings(tokens)
mask = Tensor.full((1, 1, seqlen, start_pos+seqlen), float("-inf"), dtype=h.dtype, device=h.device).triu(start_pos+1).realize() if seqlen > 1 else None
for layer in self.layers: h = layer(h, start_pos, freqs_cis, mask)
logits = self.output(self.norm(h))[:, -1, :]
if temperature < 1e-6:
ret = logits.argmax(-1)
else:
ret = (logits / temperature).softmax().multinomial()
return ret.realize()
def __call__(self, tokens:Tensor, start_pos:Variable, temperature:float=0.0):
# TODO: better way to handle the first call v.s. the rest?
if tokens.shape[0:2] == (1,1) and self.forward_jit is not None:
assert start_pos > 0
return self.forward_jit(tokens, Variable("start_pos", 1, self.max_context).bind(start_pos), temperature)
return self.forward(tokens, start_pos, temperature)
# *** helpers ***
def convert_from_huggingface(weights:Dict[str, Tensor], model: Transformer, n_heads: int, n_kv_heads: int):
def permute(v: Tensor, n_heads: int):
return v.reshape(n_heads, 2, v.shape[0] // n_heads // 2, v.shape[1]).transpose(1, 2).reshape(*v.shape[:2])
keymap = {
"model.embed_tokens.weight": "tok_embeddings.weight",
**{f"model.layers.{l}.input_layernorm.weight": f"layers.{l}.attention_norm.weight" for l in range(len(model.layers))},
**{f"model.layers.{l}.self_attn.{x}_proj.weight": f"layers.{l}.attention.w{x}.weight" for x in ["q", "k", "v", "o"] for l in range(len(model.layers))},
**{f"model.layers.{l}.post_attention_layernorm.weight": f"layers.{l}.ffn_norm.weight" for l in range(len(model.layers))},
**{f"model.layers.{l}.mlp.{x}_proj.weight": f"layers.{l}.feed_forward.w{y}.weight" for x, y in {"gate": "1", "down": "2", "up": "3"}.items() for l in range(len(model.layers))},
"model.norm.weight": "norm.weight",
"lm_head.weight": "output.weight",
}
sd = {}
for k, v in weights.items():
if ".rotary_emb." in k: continue
v = v.to(Device.DEFAULT)
if "model.layers" in k:
if "q_proj" in k:
v = permute(v, n_heads)
elif "k_proj" in k:
v = permute(v, n_kv_heads)
sd[keymap[k]] = v
return sd
def fix_bf16(weights:Dict[Any, Tensor]):
if getenv("SUPPORT_BF16", 1):
# TODO: without casting to float16, 70B llama OOM on tinybox.
return {k:v.cast(dtypes.float16) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()}
# TODO: check if device supports bf16
return {k:v.llvm_bf16_cast(dtypes.half).to(v.device) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()}