mirror of https://github.com/commaai/tinygrad.git
71 lines
3.5 KiB
Python
71 lines
3.5 KiB
Python
import unittest
|
|
|
|
from tinygrad.codegen.kernel import Opt, OptOps
|
|
from tinygrad.codegen.linearizer import Linearizer
|
|
from tinygrad.engine.schedule import create_schedule
|
|
from tinygrad.engine.search import time_linearizer, bufs_from_lin, actions
|
|
from tinygrad.device import Device, Buffer
|
|
from tinygrad.ops import LoadOps, BufferOps
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.helpers import Context
|
|
from tinygrad.engine.realize import capturing
|
|
|
|
class TestTimeLinearizer(unittest.TestCase):
|
|
@unittest.skipIf(Device.DEFAULT in {"AMD", "NV"}, "Tries to open HSA/CUDA. #4607")
|
|
def test_reasonable_time(self):
|
|
si = [i for i in create_schedule([Tensor([1,2,3,4]).add(1).lazydata]) if i.ast[0].op not in LoadOps][0]
|
|
out = Buffer(Device.DEFAULT, si.outputs[0].size, si.outputs[0].dtype).allocate()
|
|
memops = {x.arg.idx:x.arg.st.real_size() for x in si.ast[0].lazyops if x.op is BufferOps.LOAD}
|
|
rawbufs = [out] + [Buffer(Device.DEFAULT, memops[i], x.dtype).allocate() for i,x in enumerate(si.inputs, start=len(si.outputs))]
|
|
tm = time_linearizer(Linearizer(*si.ast), rawbufs, allow_test_size=False, cnt=10)
|
|
assert tm > 0 and tm != float('inf')
|
|
|
|
@unittest.skipIf(Device.DEFAULT in {"AMD", "NV"}, "Tries to open HSA/CUDA. #4607")
|
|
def test_bufs_from_lin(self):
|
|
si = [i for i in create_schedule([Tensor([1,2,3,4]).add(1).lazydata]) if i.ast[0].op not in LoadOps][0]
|
|
rawbufs = bufs_from_lin(lin:=Linearizer(*si.ast))
|
|
assert len(rawbufs) == len(lin.membufs)
|
|
assert all(r is not None for r in rawbufs)
|
|
assert all(isinstance(r, Buffer) for r in rawbufs)
|
|
assert all(r.size > 0 for r in rawbufs)
|
|
|
|
class TestBEAM(unittest.TestCase):
|
|
@unittest.skipIf(Device.DEFAULT in {"AMD", "NV"}, "Tries to open HSA/CUDA. #4607")
|
|
def test_dynamic_beam(self):
|
|
# TODO: make this infra globally usable
|
|
class Capture:
|
|
def __init__(self): self.captured = []
|
|
def add(self, x): self.captured.append(x)
|
|
capturing.append(Capture())
|
|
with Context(BEAM=1): Tensor.zeros(16).contiguous().realize()
|
|
k_beam_1 = capturing[0].captured
|
|
capturing.clear()
|
|
capturing.append(Capture())
|
|
with Context(BEAM=0): Tensor.zeros(16).contiguous().realize()
|
|
k_beam_0 = capturing[0].captured
|
|
capturing.clear()
|
|
assert k_beam_0[-1].prg.p.src != k_beam_1[-1].prg.p.src
|
|
|
|
def test_get_linearizer_actions(self):
|
|
from test.test_linearizer import helper_realized_ast
|
|
a = Tensor.rand(4, 3)
|
|
b = Tensor.rand(3)
|
|
realized_ast, _ = helper_realized_ast(a @ b)
|
|
from tinygrad.engine.search import get_linearizer_actions
|
|
lins = get_linearizer_actions(Linearizer(realized_ast), False).values()
|
|
|
|
# ensure amt=0 are not duplicated
|
|
if Opt(OptOps.UPCAST, 0, 0) in actions:
|
|
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.UPCAST, axis=0, amt=4)]) == 0, "did not de-dup UPCAST"
|
|
if Opt(OptOps.LOCAL, 0, 0) in actions:
|
|
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.LOCAL, axis=0, amt=4)]) == 0, "did not de-dup LOCAL"
|
|
if Opt(OptOps.UNROLL, 0, 0) in actions:
|
|
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.UNROLL, axis=0, amt=3)]) == 0, "did not de-dup UNROLL"
|
|
if Opt(OptOps.GROUP, 0, 0) in actions:
|
|
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.GROUP, axis=0, amt=3)]) == 0, "did not de-dup GROUP"
|
|
if Opt(OptOps.GROUPTOP, 0, 0) in actions:
|
|
assert len([x for x in lins if x.applied_opts[0] == Opt(OptOps.GROUPTOP, axis=0, amt=3)]) == 0, "did not de-dup GROUPTOP"
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|