tinygrad/test/helpers.py

51 lines
2.3 KiB
Python

import sys
import numpy as np
from tinygrad import Tensor, Device, dtypes
from tinygrad.engine.realize import Runner
from tinygrad.dtype import DType
from tinygrad.nn.state import get_parameters
from tinygrad.helpers import Context, CI, OSX, getenv
def derandomize_model(model):
with Context(GRAPH=0):
for p in get_parameters(model):
p.lazydata = Tensor.empty(p.shape, device=p.device, dtype=p.dtype).lazydata
p.realize()
def assert_jit_cache_len(fxn, expected_len):
assert len(fxn.jit_cache) > 0
# until we have a better way of typing the prg in ExecItem
if issubclass(type(fxn.jit_cache[0].prg), Runner) and not type(fxn.jit_cache[0].prg).__name__.endswith('Graph'):
assert len(fxn.jit_cache) == expected_len
else:
assert len(fxn.jit_cache) == 1
# until we have a better way of typing the prg in ExecItem
assert type(fxn.jit_cache[0].prg).__name__.endswith('Graph')
assert len(fxn.jit_cache[0].prg.jit_cache) == expected_len
def is_dtype_supported(dtype: DType, device: str = Device.DEFAULT):
if dtype == dtypes.bfloat16:
# NOTE: this requires bf16 buffer support
return device in {"HSA", "AMD"} or (device in {"CUDA", "NV"} and not CI and not getenv("PTX"))
if device in ["WEBGPU", "WEBGL"]: return dtype in [dtypes.float, dtypes.int32, dtypes.uint32]
if device == "CUDA" and getenv("PTX") and dtype in (dtypes.int8, dtypes.uint8): return False
# for CI GPU and OSX, cl_khr_fp16 isn't supported
# for CI LLVM, it segfaults because it can't link to the casting function
# CUDACPU architecture is sm_35 but we need at least sm_70 to run fp16 ALUs
# PYTHON supports half memoryview in 3.12+ https://github.com/python/cpython/issues/90751
if dtype == dtypes.half:
if device == "GPU": return not CI and not OSX
if device in ["LLVM", "CUDA", "NV"]: return not CI
if device == "PYTHON": return sys.version_info >= (3, 12)
if dtype == dtypes.float64: return device != "METAL" and not (OSX and device == "GPU")
return True
def rand_for_dtype(dt:DType, size:int):
if dtypes.is_unsigned(dt):
return np.random.randint(0, 100, size=size, dtype=dt.np)
elif dtypes.is_int(dt):
return np.random.randint(-100, 100, size=size, dtype=dt.np)
elif dt == dtypes.bool:
return np.random.choice([True, False], size=size)
return np.random.uniform(-10, 10, size=size).astype(dt.np)