tinygrad/test/models/test_end2end.py

165 lines
6.0 KiB
Python

import torch
from torch import nn
import unittest
import numpy as np
from tinygrad.nn.state import get_parameters, get_state_dict
from tinygrad.nn import optim, Linear, Conv2d, BatchNorm2d
from tinygrad.tensor import Tensor
from extra.datasets import fetch_mnist
from tinygrad.helpers import CI
def compare_tiny_torch(model, model_torch, X, Y):
with Tensor.train():
model_torch.train()
model_state_dict = get_state_dict(model)
for k,v in model_torch.named_parameters():
if not CI: print(f"initting {k} from torch")
model_state_dict[k].assign(Tensor(v.detach().numpy())).realize()
optimizer = optim.SGD(get_parameters(model), lr=0.001)
optimizer_torch = torch.optim.SGD(model_torch.parameters(), lr=0.001)
Xt = torch.Tensor(X.numpy())
np.testing.assert_allclose(X.numpy(), Xt.detach().numpy())
out = model(X)
loss = (out * Y).mean()
if not CI: print(loss.realize().numpy())
out_torch = model_torch(torch.Tensor(X.numpy()))
loss_torch = (out_torch * torch.Tensor(Y.numpy())).mean()
if not CI: print(loss_torch.detach().numpy())
# assert losses match
np.testing.assert_allclose(loss.realize().numpy(), loss_torch.detach().numpy(), atol=1e-4)
# zero and backward
optimizer.zero_grad()
loss.backward()
optimizer_torch.zero_grad()
loss_torch.backward()
for k,v in list(model_torch.named_parameters())[::-1]:
g = model_state_dict[k].grad.numpy()
gt = v.grad.detach().numpy()
if not CI: print("testing grads", k, model_state_dict[k].grad.dtype)
np.testing.assert_allclose(g, gt, atol=1e-3, err_msg=f'grad mismatch {k}')
# take the steps
optimizer.step()
optimizer_torch.step()
# assert weights match
for k,v in model_torch.named_parameters():
if not CI: print("testing weight", k, model_state_dict[k].dtype)
np.testing.assert_allclose(model_state_dict[k].numpy(), v.detach().numpy(), atol=1e-3, err_msg=f'weight mismatch {k}')
def get_mnist_data():
_X_train, _Y_train, X_test, Y_test = fetch_mnist()
BS = 32
num_classes = 10
X = Tensor(X_test[0:BS].astype(np.float32))
Y = np.zeros((BS, num_classes), np.float32)
Y[range(BS),Y_test[0:BS]] = -1.0*num_classes
return X, Tensor(Y)
class TestEnd2End(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.X, cls.Y = get_mnist_data()
def setUp(self):
torch.manual_seed(123)
def test_linear_mnist(self):
class LinTiny:
def __init__(self, bias=False):
self.l1 = Linear(784, 128, bias=bias)
self.l2 = Linear(128, 10, bias=bias)
def __call__(self, x):
return self.l2(self.l1(x).relu()).log_softmax(-1)
class LinTorch(nn.Module):
def __init__(self, bias=False):
super().__init__()
self.l1 = nn.Linear(784, 128, bias=bias)
self.l2 = nn.Linear(128, 10, bias=bias)
def forward(self, x):
return self.l2(self.l1(x).relu()).log_softmax(-1)
compare_tiny_torch(LinTiny(), LinTorch(), self.X, self.Y)
def test_bn_mnist(self):
class LinTiny:
def __init__(self):
self.l1 = Linear(784, 128)
self.l2 = Linear(128, 10)
self.bn1 = BatchNorm2d(128)
def __call__(self, x):
return self.l2(self.bn1(self.l1(x).reshape(x.shape[0], -1, 1, 1)).reshape(x.shape[0], -1).relu()).log_softmax(-1)
class LinTorch(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Linear(784, 128)
self.l2 = nn.Linear(128, 10)
self.bn1 = nn.BatchNorm2d(128)
def forward(self, x):
return self.l2(self.bn1(self.l1(x).reshape(x.shape[0], -1, 1, 1)).reshape(x.shape[0], -1).relu()).log_softmax(-1)
compare_tiny_torch(LinTiny(), LinTorch(), self.X, self.Y)
def test_bn_alone(self):
np.random.seed(1337)
X = Tensor(np.random.randn(32, 10, 1, 1).astype(np.float32))
Y = Tensor(np.random.randn(32, 10, 1, 1).astype(np.float32))
compare_tiny_torch(BatchNorm2d(10), nn.BatchNorm2d(10), X, Y)
def test_bn_linear(self):
BS, K = 2, 1
eps = 0
X = Tensor([1,0]).reshape(BS, K, 1, 1)
Y = Tensor([-1,0]).reshape(BS, K, 1, 1)
class LinTiny:
def __init__(self):
self.l1 = Conv2d(K, K, 1, bias=False)
self.bn1 = BatchNorm2d(K, affine=False, track_running_stats=False, eps=eps)
def __call__(self, x): return self.bn1(self.l1(x))
class LinTorch(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Conv2d(K, K, 1, bias=False)
self.bn1 = nn.BatchNorm2d(K, affine=False, track_running_stats=False, eps=eps)
def forward(self, x): return self.bn1(self.l1(x))
model_torch = LinTorch()
with torch.no_grad():
model_torch.l1.weight[:] = 1.
compare_tiny_torch(LinTiny(), model_torch, X, Y)
def test_conv_mnist(self):
class LinTiny:
def __init__(self, has_batchnorm=False):
self.c1 = Conv2d(1, 8, 3, stride=2)
self.c2 = Conv2d(8, 16, 3, stride=2)
self.l1 = Linear(16*6*6, 10)
if has_batchnorm:
self.bn1, self.bn2 = BatchNorm2d(8), BatchNorm2d(16)
else:
self.bn1, self.bn2 = lambda x: x, lambda x: x
def __call__(self, x):
return self.l1(self.bn2(self.c2(self.bn1(self.c1(x)).relu())).relu().reshape(x.shape[0], -1)).log_softmax(-1)
class LinTorch(nn.Module):
def __init__(self, has_batchnorm=False):
super().__init__()
self.c1 = nn.Conv2d(1, 8, 3, stride=2)
self.c2 = nn.Conv2d(8, 16, 3, stride=2)
self.l1 = nn.Linear(16*6*6, 10)
if has_batchnorm:
self.bn1, self.bn2 = nn.BatchNorm2d(8), nn.BatchNorm2d(16)
else:
self.bn1, self.bn2 = lambda x: x, lambda x: x
def forward(self, x):
return self.l1(self.bn2(self.c2(self.bn1(self.c1(x)).relu())).relu().reshape(x.shape[0], -1)).log_softmax(-1)
for has_batchnorm in [False, True]:
with self.subTest(has_batchnorm=has_batchnorm):
compare_tiny_torch(LinTiny(has_batchnorm), LinTorch(has_batchnorm), self.X.reshape((-1, 1, 28, 28)), self.Y)
if __name__ == "__main__":
unittest.main()