tinygrad/test/test_linearizer.py

543 lines
23 KiB
Python

# ruff: noqa: E501
import numpy as np
import unittest, os
from tinygrad.codegen.kernel import Opt, OptOps, tensor_cores
from tinygrad.codegen.linearizer import Linearizer, UOp, UOps
from tinygrad.device import Compiled, Device, Buffer
from tinygrad.ops import BufferOps, MemBuffer, ConstBuffer, LazyOp, LoadOps, TernaryOps
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View
from tinygrad.tensor import Tensor
from tinygrad.jit import CacheCollector
from tinygrad.realize import run_schedule
from tinygrad.helpers import dtypes, prod
@unittest.skipIf(not isinstance(Device[Device.DEFAULT], Compiled), "linearizer is only for compiled backends")
class TestLinearizer(unittest.TestCase):
def test_arg_dedup(self):
a, b = Tensor.randn(4), Tensor.randn(4)
np_a, np_b = a.numpy(), b.numpy()
CacheCollector.start()
c = ((a.shrink(((0, 2),)) - a.shrink(((2, 4),))) - (b.shrink(((0, 2),)) - b.shrink(((2, 4),)))).realize()
rawbufs = CacheCollector.finish()[0].rawbufs
assert len(rawbufs) == 3 and set(rawbufs[1:]) == {a.lazydata.realized, b.lazydata.realized}
np_c = (np_a[:2] - np_a[2:]) - (np_b[:2] - np_b[2:])
np.testing.assert_allclose(np_c, c.numpy(), atol=1e-4, rtol=1e-4)
def test_load_dedup(self):
# for different leaves in the AST, the same loads may occur.
a = Tensor.randn(4).realize()
# these are of size 3 to avoid float4 coalesce
r = a[:-1] + a[1:]
k = Linearizer(r.lazydata.schedule()[-1].ast)
k.upcast()
k.linearize()
num_loads = len([uop for uop in k.uops if uop.uop == UOps.LOAD])
assert num_loads <= 4, "more load uops than needed"
assert num_loads >= 4, "unexpected number of uops, maybe this test needs updating?"
def test_upcast_cse(self):
# when upcasting, within a subtree, there may be common expressions.
a, b = Tensor.randn(1).realize(), Tensor.randn(1).realize()
r = a.expand([2]) + b.expand([2])
k = Linearizer(r.lazydata.schedule()[-1].ast)
k.upcast()
k.linearize()
num_ops = len([uop for uop in k.uops if uop.uop == UOps.ALU])
assert num_ops <= 1, "more alu uops than needed"
def test_zero_fold(self):
a, b = Tensor.randn(1).realize(), Tensor.randn(1).realize()
r = Tensor.stack([a, b])
k = Linearizer(r.lazydata.schedule()[-1].ast)
k.upcast()
k.linearize()
num_ops = len([uop for uop in k.uops if uop.uop == UOps.ALU])
assert num_ops == 0, "more alu uops than needed"
@unittest.skip("constant folding not supported yet")
def test_constant_fold(self):
a, b = Tensor(2), Tensor(3)
r = a * b
k = Linearizer(r.lazydata.schedule()[-1].ast)
k.linearize()
num_ops = len([uop for uop in k.uops if uop.uop in [UOps.LOAD, UOps.ALU]])
assert num_ops <= 0, "more load or alu uops than needed"
def test_tensor_cores(self):
if Device.DEFAULT not in tensor_cores:
self.skipTest("No tensor cores for device")
for tc in tensor_cores[Device.DEFAULT]:
if tc.arch is not None and tc.arch != os.uname().machine: continue
a, b = Tensor.rand(tc.dims[0], tc.dims[2], dtype=tc.dtype_in), Tensor.rand(tc.dims[2], tc.dims[1], dtype=tc.dtype_in)
np_a, np_b = a.numpy(), b.numpy()
if tc.dtype_out != tc.dtype_in:
r = (a.reshape(tc.dims[0], 1, tc.dims[2]) * b.permute(1,0).reshape(1, tc.dims[1], tc.dims[2])).cast(tc.dtype_out).sum(axis=2)
else:
r = a @ b
realized_ast, _ = helper_realized_ast(r)
k = Linearizer(realized_ast)
k.apply_tensor_cores(1)
k.linearize()
assert len([uop for uop in k.uops if uop.uop == UOps.WMMA]) == 1, "tensor core not triggered"
np_c = np_a @ np_b
np.testing.assert_allclose(np_c, r.numpy(), atol=5e-3, rtol=1e-4)
def test_limit_dims_to_max_5d_global(self):
t = Tensor.rand(3, 4, 5, 6, 7).pad(((1, 1), (1, 1), (1, 1), (1, 1), (1, 1))) + 1
sched = [si for si in t.lazydata.schedule() if si.ast.op not in LoadOps]
assert len(sched) == 1
lin = Linearizer(sched[0].ast)
assert lin.full_shape[:lin.global_dims] == (5, 6, 7, 8, 9)
lin.limit_dims_to_max(global_max=[16, 16, 16], local_max=[16, 16, 16])
def test_sum_collapse(self):
t = Tensor.ones(256,256).sum()
sched = [si for si in t.lazydata.schedule() if si.ast.op not in LoadOps]
assert len(sched) == 1
lin = Linearizer(sched[0].ast)
assert not any(u.uop == UOps.LOOP for u in lin.linearize().uops), "found loop in sum collapse"
def test_simplify_uop(self):
def helper_test_simplify(uop, dtype, vin, arg=None):
ast = LazyOp(op=BufferOps.CONST, src=(), arg=ConstBuffer(val=42, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(), strides=(), offset=0, mask=None, contiguous=True),))))
ast = LazyOp(BufferOps.STORE, (ast,), MemBuffer(0, dtype=dtypes.float, st=ShapeTracker(views=(View(shape=(), strides=(), offset=0, mask=None, contiguous=True),))))
lin = Linearizer(ast=ast) # this is a dummy ast
lin.uops = []
return lin.uop(uop, dtype, vin, arg, cachable=False)
c0 = UOp(UOps.CONST, dtypes.float, vin=(), arg=0.0)
assert helper_test_simplify(UOps.ALU, dtypes.bool, vin=(UOp(UOps.CONST, dtypes.bool, vin=(), arg=True), c0, c0), arg=TernaryOps.WHERE) == c0
c0 = UOp(UOps.CONST, dtypes.float, vin=(), arg=0.0)
c1 = UOp(UOps.CONST, dtypes.float, vin=(), arg=1.0)
assert helper_test_simplify(UOps.ALU, dtypes.bool, vin=(UOp(UOps.CONST, dtypes.bool, vin=(), arg=True), c0, c1), arg=TernaryOps.WHERE).uop == UOps.ALU
def helper_realized_ast(r:Tensor):
s = r.lazydata.schedule()
run_schedule(s[:-1]) # run all kernels except the last one
# now all input LazyBuffers buffers in s[-1] should be realized
output_buffer = Buffer(s[-1].out.device, prod((s if isinstance(s, int) else s.max for s in s[-1].out.shape)), s[-1].out.dtype, **s[-1].out._device_extra_args()) # allocate an output buffer
return s[-1].ast, [output_buffer] + [l.realized for l in s[-1].inputs]
@unittest.skipIf(not isinstance(Device[Device.DEFAULT], Compiled), "linearizer is only for compiled backends")
class TestFloat4(unittest.TestCase):
def setUp(self):
if not Device[Device.DEFAULT].linearizer_opts.supports_float4:
self.skipTest("Device does not support float4")
@staticmethod
def count_float4(k):
return (len([uop for uop in k.uops if uop.uop == UOps.LOAD and uop.dtype == dtypes.float.vec(4)]),
len([uop for uop in k.uops if uop.uop == UOps.STORE and len(uop.vin) == 3 and uop.vin[2].dtype == dtypes.float.vec(4)]))
# TODO: express opts below as auto opts
def test_float4_basic(self):
a = Tensor.rand(2, 8).realize()
b = Tensor.rand(2, 8).realize()
c = a + b
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.hand_coded_optimizations()
k.linearize()
assert TestFloat4.count_float4(k) == (2, 1)
def test_float4_multidim(self):
a = Tensor.rand(2, 8).realize()
b = Tensor.rand(2, 8).realize()
c = a + b
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.shift_to(0, 4) # float4 dimension
k.shift_to(0, 2, insert_before=k.shape_len-1)
k.upcast()
k.upcast()
k.local_dims += 1
k.linearize()
assert TestFloat4.count_float4(k) == (4, 2)
def test_float4_unaligned_load(self):
a = Tensor.rand(9).realize().shrink(((1, 9),))
b = Tensor.rand(9).realize().shrink(((1, 9),))
c = a + b
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.hand_coded_optimizations() # implicit trigger float4 dim
k.linearize()
assert TestFloat4.count_float4(k) == (0, 1)
def test_float4_multidim_unaligned_load(self):
a = Tensor.rand(2, 9).realize().shrink(((0, 2), (1, 9),))
b = Tensor.rand(2, 9).realize().shrink(((0, 2), (1, 9),))
c = a + b
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.shift_to(len(k.full_unupcasted_shape)-1, 4) # manual trigger float4 dim
k.upcast()
k.shift_to(len(k.full_unupcasted_shape)-1, 2, insert_before=k.shape_len-1)
k.upcast()
k.local_dims += 1
k.linearize()
assert TestFloat4.count_float4(k) == (0, 2)
def test_float4_sometimes_unaligned(self):
a = Tensor.rand(1, 1, 8).realize()
b = Tensor.rand(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# only the first and last conv dot products are aligned in a, and b is never aligned, so no
# float4 should be emitted (the reduce axis of size 4 is the float4 axis here)
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.upcast()
k.linearize()
assert TestFloat4.count_float4(k) == (0, 0)
def test_float4_multidim_sometimes_unaligned(self):
a = Tensor.rand(1, 1, 7).realize()
b = Tensor.rand(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# the first conv dot product is aligned in a. If we upcast the output and reduce
# dimension, then we could do float4 for only that one set of loads, but we currently
# don't.
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.upcast()
k.upcast()
k.linearize()
assert TestFloat4.count_float4(k) == (0, 1)
def test_float4_noncontiguous(self):
a = Tensor.rand(4, 2).realize()
b = Tensor.rand(4, 2).realize()
c = a + b
# we will upcast the top axis of sz 4. they should not be coalesced into float4,
# since the top axis is not contiguous.
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.shift_to(0, 4, top=True) # top axes are float4 axes
k.upcast()
k.linearize()
assert TestFloat4.count_float4(k) == (0, 0)
def test_float4_expand(self):
a = Tensor.rand(9).realize().shrink(((1, 9),))
b = Tensor.rand(2).realize().reshape((2, 1)).expand((2,4)).reshape((8,))
c = a + b
# we will upcast the top axis of sz 4. they should not be coalesced into float4,
# since the top axis is not contiguous.
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.shift_to(0, 4) # float4 axis
k.upcast()
k.linearize()
assert TestFloat4.count_float4(k) == (0, 1)
def test_float4_heterogeneous(self):
a = Tensor.rand(8).realize()
b = Tensor.rand(9).realize().shrink(((1, 9),))
c = a + b
# should float4 b but not a
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.shift_to(0, 4) # float4 axis
k.upcast()
k.linearize()
assert TestFloat4.count_float4(k) == (1, 1)
@unittest.skipIf(not isinstance(Device[Device.DEFAULT], Compiled), "linearizer is only for compiled backends")
class TestHandCodedOpts(unittest.TestCase):
def test_masked_upcast(self):
layer_1 = Tensor.cat(*[Tensor.rand(5) for _ in range(4)])
layer_2 = Tensor.cat(layer_1.unsqueeze(0), Tensor.rand(6, 20))
s = layer_2.lazydata.schedule()[-1]
k = Linearizer(s.ast)
k.hand_coded_optimizations()
assert len(k.bufs) == 6 # make sure all ops are done in one kernel
# masked upcast should upcast masked axis of size 7
# masked upcast should not upcast large (20) last axis
# float4/other hcopt shouldn't upcast last axis, since we already have 7 upcast, and the last axis is not very contiguous
assert k.upcasted == 1 and k.full_shape[-1] == 7
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "Failing because of custom kernel splitting to circumvent the 8 buffer limit")
def test_masked_upcast_wino(self):
monster = Tensor.stack([Tensor.stack([Tensor.rand(16) for _ in range(6)]) for _ in range(6)])
s = monster.lazydata.schedule()[-1]
k = Linearizer(s.ast)
k.hand_coded_optimizations()
assert len(k.bufs) == 37 # make sure all ops are done in one kernel
# should upcast the two Tensor.stacks
assert k.upcasted >= 2 and k.full_shape[k.shape_len-k.upcasted:k.shape_len].count(6) == 2
def test_masked_upcast_wino_full(self):
old_wino = Tensor.wino
Tensor.wino = True
x,w = Tensor.rand(1,4,9,9, requires_grad=True).realize(), Tensor.rand(4,4,3,3, requires_grad=True).realize()
out = Tensor.conv2d(x,w, padding=1)
upcasts = []
# collect upcasts of tile transform kernels
for i, si in enumerate(out.lazydata.schedule()):
k = Linearizer(si.ast)
k.hand_coded_optimizations()
if k.reduceop is not None: continue # not a tile transform kernel (there is a gemm reduce kernel)
if len(k.bufs) < 100: continue # not a tile transform kernel (there's a permute kernel at the end)
upcasts.append(tuple(k.full_shape[k.shape_len - k.upcasted:k.shape_len]))
assert len(upcasts) == 3 # 3 transformation matrices
assert upcasts.count((6, 6)) == 2 and upcasts.count((4, 4)) == 1
out.mean().backward()
for si in x.grad.lazydata.schedule() + w.grad.lazydata.schedule():
k = Linearizer(si.ast)
k.hand_coded_optimizations()
k.linearize()
if len(k.bufs) < 20: continue # not a tile transform kernel
# heuristic number to make sure that at least some upcasts but not too many upcasts are being done
assert 6 <= prod(k.full_shape[k.shape_len - k.upcasted:k.shape_len]) <= 49
Tensor.wino = old_wino
def test_masked_upcast_many(self):
layer_1 = Tensor.cat(Tensor.rand(3, 4), Tensor.rand(4, 4))
layer_2 = Tensor.cat(layer_1.unsqueeze(0), Tensor.rand(6, 7, 4))
layer_3 = Tensor.cat(layer_2.unsqueeze(0), Tensor.rand(6, 7, 7, 4))
s = layer_3.lazydata.schedule()[-1]
k = Linearizer(s.ast)
k.hand_coded_optimizations()
assert len(k.bufs) == 5 # make sure all ops are done in one kernel
# check that we don't do too many upcasts
assert prod(k.full_shape[k.shape_len-k.upcasted:k.shape_len]) <= 49
def test_matvec(self):
if not Device[Device.DEFAULT].linearizer_opts.has_local:
self.skipTest("Only devices with locals")
N = 128
a = Tensor.rand(1, N).realize()
b = Tensor.rand(N, N).realize()
c = a @ b
s = c.lazydata.schedule()[0]
k = Linearizer(s.ast)
k.hand_coded_optimizations()
assert len(k.group_for_reduce) == 1
assert k.local_dims == 1
assert k.upcasted == 1
def helper_linearizer_opt(r:Tensor, opts=[], apply_tc=False):
wanna_output = None
realized_ast, real_bufs = helper_realized_ast(r)
def check_opt(opts, create_k, to_prg):
k = create_k()
if apply_tc:
k.apply_tensor_cores(1, opts)
else:
for opt in opts:
k.apply_opt(opt)
prg = to_prg(k)
real_bufs[0].copyin(np.zeros((real_bufs[0].size, ), dtype=real_bufs[0].dtype.np).data) # Zero to check that all values are filled
prg.exec(real_bufs)
np.testing.assert_allclose(wanna_output, real_bufs[0].toCPU(), atol=1e-4, rtol=1e-4)
# Get baseline, which is not optimized at all.
k = Linearizer(realized_ast)
prg = Device[Device.DEFAULT].to_program(k)
prg.exec(real_bufs)
wanna_output = real_bufs[0].toCPU().copy()
# Check correctness of handcoded optimiztions.
k = Linearizer(realized_ast)
k.hand_coded_optimizations()
prg = Device[Device.DEFAULT].to_program(k)
real_bufs[0].copyin(np.zeros((real_bufs[0].size, ), dtype=real_bufs[0].dtype.np).data) # Zero to check that all values are filled
prg.exec(real_bufs)
np.testing.assert_allclose(wanna_output, real_bufs[0].toCPU(), atol=1e-4, rtol=1e-4)
for x in opts: # Check custom transformations if any.
check_opt(x, lambda: Linearizer(realized_ast), Device[Device.DEFAULT].to_program)
@unittest.skipIf(not isinstance(Device[Device.DEFAULT], Compiled), "linearizer is only for compiled backends")
class TestLinearizerOpts(unittest.TestCase):
def test_local_and_grouped_reduce(self):
if not Device[Device.DEFAULT].linearizer_opts.has_local or not Device[Device.DEFAULT].linearizer_opts.has_shared:
self.skipTest("Only Compiled uses linearizer with locals and shared")
N = 128
Tensor.manual_seed(1882)
a = Tensor.rand(4, 4, N, N)
b = Tensor.rand(4, 4, N)
r = (b.sqrt() + ((a+1).sum(axis=3).exp()))
helper_linearizer_opt(r, [
[Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 0, 8)],
[Opt(OptOps.LOCAL, 0, 16)], # Checking how it works with locals
[Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 0, 64)], # Checking how it works with grouped reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 16), Opt(OptOps.GROUPTOP, 0, 16)],
[Opt(OptOps.LOCAL, 0, 32), Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 64)], # Checking how it works with locals + grouped reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.UPCAST, 0, 8), Opt(OptOps.UNROLL, 1, 4)], # Checking how it works with locals + grouped reduce + upcasts
])
def test_upcasts(self):
N = 16
Tensor.manual_seed(1772)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = (a+b).sqrt() * ((a+1).exp())
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 0, 8)], # Checking how it works with upcasts
])
def test_full_upcast(self):
Tensor.manual_seed(1772)
a = Tensor.rand(4)
b = Tensor.rand(4)
r = (a+b).sqrt() * ((a+1).exp())
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 4)], # Checking how it works with upcasts
])
def test_matmul(self):
if not Device[Device.DEFAULT].linearizer_opts.has_local or not Device[Device.DEFAULT].linearizer_opts.has_shared:
self.skipTest("Only Compiled uses linearizer with locals and shared")
N = 128
Tensor.manual_seed(1552)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = a@b
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4)], # Checking how it works with upcasts
[Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 1, 32)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 32)],
[Opt(OptOps.LOCAL, 0, 16), Opt(OptOps.LOCAL, 1, 8)], # Checking how it works with locals
[Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 0, 32), Opt(OptOps.UNROLL, 0, 4)], # Checking how it works with grouped_reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.LOCAL, 0, 8), Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 8), Opt(OptOps.GROUPTOP, 0, 4)], # Checking how it works with local+grouped_reduce
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 2)], # Checking all together
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UPCAST, 0, 8)], # Full global upcast + local
])
def test_double_reduce(self):
if not Device[Device.DEFAULT].linearizer_opts.has_local or not Device[Device.DEFAULT].linearizer_opts.has_shared:
self.skipTest("Only Compiled uses linearizer with locals and shared")
N = 128
Tensor.manual_seed(1552)
a = Tensor.rand(8, N, 8, N)
r = a.sum(axis=(1,3))
helper_linearizer_opt(r, [
# openCL / GPU=1 is 256 max threads
[Opt(OptOps.GROUPTOP, 0, 2)], [Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 1, 2)], [Opt(OptOps.GROUPTOP, 1, 32)], # Checking how it works with 1 grouped_reduce.
[Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 2)],
[Opt(OptOps.GROUPTOP, 0, 16), Opt(OptOps.GROUPTOP, 1, 2)],
[Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 64)], # Checking how it works with 2 grouped_reduces.
[Opt(OptOps.GROUPTOP, 0, 16), Opt(OptOps.GROUPTOP, 1, 2), Opt(OptOps.UNROLL, 0, 4)],
[Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 32), Opt(OptOps.UNROLL, 2, 4)], # Checking how it works with 2 grouped_reduces + upcasts.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 4)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 32), Opt(OptOps.UNROLL, 1, 4)], # Checking how it works with 2 grouped_reduces + upcasts + locals.
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UNROLL, 1, 4)], # Checking how it works with 2 grouped_reduces + upcasts + locals.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2), Opt(OptOps.UPCAST, 0, 2)], # No globals
])
def test_tensor_core_opts(self):
if not not Device[Device.DEFAULT].linearizer_opts.has_local:
self.skipTest("Only Compiled uses linearizer with locals")
if Device.DEFAULT not in tensor_cores:
self.skipTest("No tensor cores for device")
N = 128
Tensor.manual_seed(1552)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = a@b
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 1, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4)], # check upcasts
[Opt(OptOps.UNROLL, 0, 2)], # check last unroll
[Opt(OptOps.LASTLOCAL, 0, 4)], # check last local
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UNROLL, 0, 2)], # check combo of last unroll and last local
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.LASTLOCAL, 0, 2)],
# [Opt(OptOps.GROUP, 0, 2)] # doesn't work because group_for_reduce dims become early locals (conflicting with TC)
], apply_tc=True)
def test_padto_matmul(self):
if Device.DEFAULT == "CUDA": self.skipTest("super slow on CUDA")
N = 17 * 17
Tensor.manual_seed(289)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
helper_linearizer_opt(a@b, [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 1, 32)],
[Opt(OptOps.PADTO, 2, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32), Opt(OptOps.PADTO, 2, 32)],
# can optimize further post PADTO
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32), Opt(OptOps.PADTO, 2, 32), Opt(OptOps.UPCAST, 0, 2), Opt(OptOps.UNROLL, 0, 4)],
])
def test_padto_max(self):
# pad uses invalid value 0, so max is not allowed
N = 17 * 17
a = -Tensor.ones(N, N)
with self.assertRaises(AssertionError):
helper_linearizer_opt(a.max(), [[Opt(OptOps.PADTO, 0, 32)],])
def test_padto_where(self):
# pad uses invalid value 0, so kernel with max is not allowed
N = 17 * 17
a = (Tensor.rand(N, N).max(axis=0) > 1).where(1, 0)
with self.assertRaises(AssertionError):
helper_linearizer_opt(a.max(), [[Opt(OptOps.PADTO, 0, 32)],])
if __name__ == '__main__':
unittest.main()